Mostrar el registro sencillo del ítem

dc.rights.licenseAtribución 4.0 Internacional (CC BY 4.0)spa
dc.contributor.authorGodoy Pérez, Lina María
dc.contributor.authorGómez Iriarte, Yeimi Johanna
dc.contributor.authorLaborde Velaides, Andrea Carolina
dc.contributor.authorMayorga Isaza, Álvaro Alfonso
dc.date.accessioned2022-11-29T22:26:55Z
dc.date.available2022-11-29T22:26:55Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.juanncorpas.edu.co/handle/001/143
dc.description.abstractEl objetivo de este trabajo es evaluar la actividad antifúngica y citotóxica de los extractos de diferentes polaridades, aceite esencial y extracto por fluido supercrítico obtenidos de las hojas de Origanum vulgare. Se realizó un estudio experimental en el que luego de adquirir el material vegetal, se obtienen los extractos etanólico total (EET), éter de petróleo (EP), de diclorometano (ED), y metanólico (EM), además del aceite esencial (AE) y el extracto por fluido supercrítico (FS). Se evalúo la acción antifúngica de los anteriores extractos a concentraciones de 500, 250, 100, 50 y 10 μg/mL mediante el método de Kirby-Bauer de difusión en PDA con posterior medición del halo de crecimiento micelial de Botrytis cinerea; y para Fusarium oxysporum se utilizó el ensayo de medio modificado a microescala. Se tuvo como control positivo el itraconazol y como blanco PDA con Tween 20 al 5%. En paralelo se realizó la prueba de citotoxicidad en tres líneas celulares de cáncer: MDA-MB-231: Cáncer de mama, PC3: Cáncer de próstata y MCF-7: Cáncer de mama, a través del método del Bromuro de 3-(4,5- dimetiltiazol-2-ilo)-2,5-difeniltetrazol (MTT).spa
dc.format.extent81 hojasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherFundación Universitaria Juan N. Corpasspa
dc.rightsTodos los derechos reservados conforme a la ley. Se permite la reproducción citando fuente. El pensamiento que se expresa en esta obra, es exclusiva responsabilidad de los autores y no compromete la ideología de la Fundación Universitaria Juan N. Corpas.spa
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.subject.meshFitoterapia - Antimicrobianos
dc.subject.meshOrégano - Plantas medicinales - Investigación
dc.subject.meshMedicina Integradora y Complementaria
dc.titleEvaluación de la actividad antifúngica y citotóxica de extractos, fracciones y aceite esencial obtenidos de las hojas de Origanum vulgarespa
dc.typeTrabajo de grado - Especializaciónspa
dcterms.audienceComunidad Académica Universitariaspa
dc.contributor.subjectmatterexpertPombo Ospina, Luis Miguel
dc.contributor.subjectmatterexpertBorrego Muñoz, Paola
dc.contributor.subjectmatterexpertForero Supelano, Víctor Hugo
dc.description.degreelevelEspecializaciónspa
dc.description.degreenameEspecialista en Terapéuticas Alternativas y Farmacología Vegetalspa
dc.description.programEspecialización en Terapéuticas Alternativas y Farmacología Vegetalspa
dc.identifier.instnameFundación Universitaria Juan N. Corpasspa
dc.identifier.reponameRepositorio Institucional Fundación Universitaria Juan N. Corpasspa
dc.identifier.repourlhttps://repositorio.juanncorpas.edu.co/spa
dc.publisher.facultyEscuela de Medicinaspa
dc.publisher.placeBogotáspa
dc.relation.indexedRedColspa
dc.relation.references1. lyssa R Letourneau:David C. Hooper,:Keri K Hall, MD, MS (Beta-lactam antibiotics: Mechanisms of action and resistance and adverse effects – UpToDate, 4 de agostode 2021. - UpToDate [Internet]. [citado 18 de mayo de 2022]. Disponible en: https://www-uptodatecom.recursosenlinea.juanncorpas.edu.co:2443/contents/search?search=lyssa%20R%20Letourneau:David%20C.%20Hooper,:Keri%20K%20Hall,%20MD,%20MS%20(Betalactam%20antibiotics:%20Mechanisms%20of%20action%20and%20resistance%20and%20adverse%20effects%20%E2%80%93%20UpToDate,%204%20de%20agostode%202021.&sp=0&searchType=PLAIN_TEXT&source=US_INPUT&searchControl=TOP_PULLDOWN&searchOffset=1&autoComplete=false&language=&max=0&index=&autoCompleteTerm=&rawSentence= 2. Andrisic L, Dudzik D, Barbas C, Milkovic L, Grune T, Zarkovic N. Short overview on metabolomics approach to study pathophysiology of oxidative stress in cancer. Redox Biol. abril de 2018;14:4758. 3. Christaki E, Marcou M, Tofarides A. Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. J Mol Evol. 1 de enero de 2020;88(1):26-40. 4. Antimicrobial Peptides - PMC [Internet]. [citado 18 de mayo de 2022]. Disponible en: https://www-ncbi-nlmnihgov.recursosenlinea.juanncorpas.edu.co:2443/pmc/articles/PMC5298395/ 5. Lombrea A, Antal D, Ardelean F, Avram S, Pavel IZ, Vlaia L, et al. A Recent Insight Regarding the Phytochemistry and Bioactivity of Origanum vulgare L. Essential Oil. Int J Mol Sci. 17 de diciembre de 2020;21(24):9653. 6. Fikry S, Khalil N, Salama O. Chemical profiling, biostatic and biocidal dynamicsof Origanum vulgare L. essential oil. AMB Express. 26 de marzo de 2019;9(1):41. 7. Čabarkapa I, Čolović R, Đuragić O, Popović S, Kokić B, Milanov D, et al. Anti-biofilm activities of essential oils rich in carvacrol and thymol against Salmonella Enteritidis. Biofouling. 16 de marzo de 2019;35(3):361-75. 8. Bhat V, Sharma SM, Shetty V, Shastry CS, Rao CV, Shenoy S, et al. Characterization of Herbal Antifungal Agent, Origanum vulgare against Oral Candida spp. Isolated from Patients with Candida-Associated Denture Stomatitis: An In vitro Study. Contemp Clin Dent. junio de 2018;9(Suppl 1):S310. 9. Pezzani R, Vitalini S, Iriti M. Bioactivities of Origanum vulgare L.: an update. Phytochem Rev. diciembre de 2017;16(6):1253-68. 10. Veenstra JP, Johnson JJ. Oregano (Origanum vulgare) extract for food preservation and improvement in gastrointestinal health. Int J Nutr. 2019;3(4):43-52. 11. Oniga I, Pușcaș C, Silaghi-Dumitrescu R, Olah NK, Sevastre B, Marica R, et al. Origanum vulgare ssp. vulgare: Chemical Composition and Biological Studies. Molecules. 19 de agosto de 2018;23(8):2077. 12. Leyva-López N, Gutiérrez-Grijalva EP, Vazquez-Olivo G, Heredia JB. Essential Oils of Oregano: Biological Activity beyond Their Antimicrobial Properties. Molecules. 14 de junio de 2017;22(6):989. 13. Simirgiotis MJ, Burton D, Parra F, López J, Muñoz P, Escobar H, et al. Antioxidant and Antibacterial Capacities of Origanum vulgare L. Essential Oil from the Arid Andean Region of Chile and its Chemical Characterization by GC-MS. Metabolites. 16 de octubre de 2020;10(10):414. 14. Khan M, Khan ST, Khan M, Mousa AA, Mahmood A, Alkhathlan HZ. Chemical diversity in leaf and stem essential oils of Origanum vulgare L. and their effects on microbicidal activities. AMB Express. 31 de octubre de 2019;9:176. 15. Liaqat I, Mahreen A, Arshad M, Arshad N. Antimicrobial and toxicological evaluation of Origanum vulgare: an in vivo study. Braz J Biol [Internet]. 6 de agosto de 2021 [citado 7 de noviembre de 2021];83. Disponible en: http://www.scielo.br/j/bjb/a/z3FSRSg3WzTXMmRWTSdLxwk/?lang=en 16. Vasconcelos NG, Croda J, Silva KE, Motta MLL, Maciel WG, Limiere LC, et al. Origanum vulgare L. essential oil inhibits the growth of carbapenem-resistant gram-negative bacteria. Rev Soc Bras Med Trop. 27 de junio de 2019;52:e20180502. 17. Bahmani M, Taherikalani M, Khaksarian M, Soroush S, Ashrafi B, Heydari R. Phytochemical Profiles and Antibacterial Activities of Hydroalcoholic Extracts of Origanum vulgare and Hypericum perforatum and Carvacrol and Hypericin as a Promising Anti-Staphylococcus aureus. Mini Rev Med Chem. 2019;19(11):923-32. 18. Fratini F, Mancini S, Turchi B, Friscia E, Pistelli L, Giusti G, et al. A novel interpretation of the Fractional Inhibitory Concentration Index: The case Origanum vulgare L. and Leptospermum scoparium J. R. et G. Forst essential oils against Staphylococcus aureus strains. Microbiological Research. 1 de enero de 2017;195:11-7. 19. Ghitea TC, El-Kharoubi A, Ganea M, Bimbo-Szuhai E, Nemeth TS, Ciavoi G, et al. The Antimicrobial Activity of Origanum vulgare L. Correlated with the Gastrointestinal Perturbation in Patients with Metabolic Syndrome. Molecules. 8 de enero de 2021;26(2):283. 20. Chouhan S, Sharma K, Guleria S. Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines (Basel). 8 de agosto de 2017;4(3):58. 21. Chuang LT, Tsai TH, Lien TJ, Huang WC, Liu JJ, Chang H, et al. Ethanolic Extract of Origanum vulgare Suppresses Propionibacterium acnes-Induced Inflammatory Responses in Human Monocyte and Mouse Ear Edema Models. Molecules. 9 de agosto de 2018;23(8):1987. 22. Taleb MH, Abdeltawab NF, Shamma RN, Abdelgayed SS, Mohamed SS, Farag MA, et al. Origanum vulgare L. Essential Oil as a Potential Anti-Acne Topical Nanoemulsion—In Vitro and In Vivo Study. Molecules. 28 de agosto de 2018;23(9):2164. 23. Fournomiti M, Kimbaris A, Mantzourani I, Plessas S, Theodoridou I, Papaemmanouil V, et al. Antimicrobial activity of essential oils of cultivated oregano (Origanum vulgare), sage (Salvia officinalis), and thyme (Thymus vulgaris) against clinical isolates of Escherichia coli, Klebsiella oxytoca, and Klebsiella pneumoniae. Microbial Ecology in Health and Disease. 1 de diciembre de 2015;26(1):23289. 24. Lee JH, Kim YG, Lee J. Carvacrol-rich oregano oil and thymol-rich thyme red oil inhibit biofilm formation and the virulence of uropathogenic Escherichia coli. Journal of Applied Microbiology. 2017;123(6):1420-8. 25. Harmati M, Gyukity-Sebestyen E, Dobra G, Terhes G, Urban E, Decsi G, et al. Binary mixture of Satureja hortensis and Origanum vulgare subsp. Hirtum essential oils: in vivo therapeutic efficiency against Helicobacter pylori infection. Helicobacter. 2017;22(2):e12350. 26. Barbosa LN, Alves FCB, Andrade BFMT, Albano M, Rall VLM, Fernandes AAH, et al. Proteomic analysis and antibacterial resistance mechanisms of Salmonella Enteritidis submitted to the inhibitory effect of Origanum vulgare essential oil, thymol and carvacrol. Journal of Proteomics. 1 de marzo de 2020;214:103625. 27. Karaman M, Bogavac M, Radovanović B, Sudji J, Tešanović K, Janjušević L. Origanum vulgare essential oil affects pathogens causing vaginal infections. Journal of Applied Microbiology. 2017;122(5):1177-85. 28. Pradebon Brondani L, Alves da Silva Neto T, Antonio Freitag R, Guerra Lund R. Evaluation of anti-enzyme properties of Origanum vulgare essential oil against oral Candida albicans. Journal de Mycologie Médicale. 1 de marzo de 2018;28(1):94-100. 29. Vahedi G, Khosravi AR, Shokri H, Moosavi Z, Delirezh N, Sharifzadeh A, et al. Fungicidal effect of Origanum vulgare essential oil against Candida glabrata and its cytotoxicity against macrophages. J Herbmed Pharmacol. 24 de marzo de 2016;5(2):78-84. 30. Baj T, Biernasiuk A, Wróbel R, Malm A. Chemical composition and in vitro activity of Origanum vulgare L., Satureja hortensis L., Thymus serpyllum L. and Thymus vulgaris L. essential oils towards oral isolates of Candida albicans and Candida glabrata. Open Chemistry. 1 de enero de 2020;18(1):108-18. 31. Mediouni S, Jablonski JA, Tsuda S, Barsamian A, Kessing C, Richard A, et al. Oregano Oil and Its Principal Component, Carvacrol, Inhibit HIV-1 Fusion into Target Cells. J Virol. 16 de julio de 2020;94(15):e00147-20. 32. De Santis F, Poerio N, Gismondi A, Nanni V, Di Marco G, Nisini R, et al. Hydroalcoholic extract from Origanum vulgare induces a combined anti-mycobacterial and anti-inflammatory response in innate immune cells. PLoS One. 4 de marzo de 2019;14(3):e0213150. 33. Parra C, Muñoz P, Bustos L, Parra F, Simirgiotis MJ, Escobar H. UHPLC-DAD Characterization of Origanum vulgare L. from Atacama Desert Andean Region and Antioxidant, Antibacterial and Enzyme Inhibition Activities. Molecules. 6 de abril de 2021;26(7):2100. 34. Hambardzumyan S, Sahakyan N, Petrosyan M, Nasim MJ, Jacob C, Trchounian A. Origanum vulgare L. extract-mediated synthesis of silver nanoparticles, their characterization and antibacterial activities. AMB Express. 5 de septiembre de 2020;10:162. 35. García-Pérez ME, Alfonso-Castillo A, Lores OF, Batista-Duharte A, Lemus-Rodríguez Z. Toxicological evaluation of an aqueous suspension from leaves and stems of Petiveria alliacea L. (Phytolaccaceae). Journal of Ethnopharmacology. 30 de enero de 2018;211:29-37. 36. Ma LJ, Geiser DM, Proctor RH, Rooney AP, O’Donnell K, Trail F, et al. Fusarium Pathogenomics. Annu Rev Microbiol. 8 de septiembre de 2013;67(1):399-416. Dananjaya SHS, Udayangani RMC, Shin SY, Edussuriya M, Nikapitiya C, Lee J, et al. In vitro and in vivo antifungal efficacy of plant based lawsone against Fusarium oxysporum species complex. Microbiol Res. agosto de 2017;201:21-9. 38. Villa-Martínez A, Pérez-Leal R, Morales-Morales HA, Basurto-Sotelo M, Soto-Parra JM, Martínez-Escudero E. Situación actual en el control de Fusarium spp. y evaluación de la actividad antifúngica de extractos vegetales. Acta Agronómica. abril de 2015;64(2):194-205. 39. Shabani F, Kumar L, Esmaeili A. Future distributions of Fusarium oxysporum f. spp. in European, Middle Eastern and North African agricultural regions under climate change. Agriculture, Ecosystems & Environment. 1 de diciembre de 2014;197:96-105. 40. Osorio-Guarín JA, Enciso-Rodríguez FE, González C, Fernández-Pozo N, Mueller LA, Barrero LS. Association analysis for disease resistance to Fusarium oxysporum in cape gooseberry (Physalis peruviana L). BMC Genomics. 18 de marzo de 2016;17(1):248. 41. Guarro J. Fusariosis, a complex infection caused by a high diversity of fungal species refractory to treatment. Eur J Clin Microbiol Infect Dis. diciembre de 2013;32(12):1491-500. 42. Taj-Aldeen SJ. Reduced Multidrug Susceptibility Profile Is a Common Feature of Opportunistic Fusarium Species: Fusarium Multi-Drug Resistant Pattern. J Fungi (Basel). 10 de abril de 2017;3(2):E18. 43. Garcia RR, Min Z, Narasimhan S, Bhanot N. Fusarium brain abscess: case report and literature review. Mycoses. enero de 2015;58(1):22-6. 44. van Diepeningen AD, Al-Hatmi AMS, Brankovics B, de Hoog GS. Taxonomy and Clinical Spectra of Fusarium Species: Where Do We Stand in 2014? Curr Clin Micro Rpt. 1 de septiembre de 2014;1(1):10-8. 45. Characterization of a novel genomovirus in the phytopathogenic fungus Botrytis cinerea - ClinicalKey [Internet]. [citado 18 de mayo de 2022]. Disponible en: https://www-clinicalkey-es.recursosenlinea.juanncorpas.edu.co:2443/#!/content/journal/1-s2.0-S0042682220302336 46. Jurgensen CW, Madsen A. Exposure to the airborne mould Botrytis and its health effects. Ann Agric Environ Med. 2009;16(2):183-96. 47. Hashimoto S, Tanaka E, Ueyama M, Terada S, Inao T, Kaji Y, et al. A case report of pulmonary Botrytis sp. infection in an apparently healthy individual. BMC Infect Dis. diciembre de 2019;19(1):684. 48. Richards JK, Xiao CL, Jurick WM. Botrytis spp.: A Contemporary Perspective and Synthesis of Recent Scientific Developments of a Widespread Genus that Threatens Global Food Security. Phytopathology®. marzo de 2021;111(3):432-6. 49. Gruľová D, Caputo L, Elshafie HS, Baranová B, De Martino L, Sedlák V, et al. Thymol Chemotype Origanum vulgare L. Essential Oil as a Potential Selective Bio-Based Herbicide on Monocot Plant Species. Molecules. 29 de enero de 2020;25(3):E595. 50. Marchese A, Orhan IE, Daglia M, Barbieri R, Di Lorenzo A, Nabavi SF, et al. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem. 1 de noviembre de 2016;210:402-14. 51. Andrisic L, Dudzik D, Barbas C, Milkovic L, Grune T, Zarkovic N. Short overview on metabolomics approach to study pathophysiology of oxidative stress in cancer. Redox Biol. abril de 2018;14:47-58. 52. Papel del tumor y la autofagia del huésped en el metabolismo del cáncer - PubMed [Internet]. [citado 18 de mayo de 2022]. Disponible en: https://pubmed.ncbi.nlm.nih.gov/31160394/ 53. Cancer (IARC) TIA for R on. Global Cancer Observatory [Internet]. [citado 18 de mayo de 2022]. Disponible en: https://gco.iarc.fr/ 54. Golemis EA, Scheet P, Beck TN, Scolnick EM, Hunter DJ, Hawk E, et al. Molecular mechanisms of the preventable causes of cancer in the United States. Genes Dev. 1 de julio de 2018;32(13-14):868-902. 55. Wang JJ, Lei KF, Han F. Tumor microenvironment: recent advances in various cancer treatments. Eur Rev Med Pharmacol Sci. junio de 2018;22(12):3855-64. 56. Inmunoterapia contra el cáncer mejorada con nanotecnología: la inmunología se encuentra con la nanotecnología - PubMed [Internet]. [citado 18 de mayo de 2022]. Disponible en: https://pubmed.ncbi.nlm.nih.gov/32942725/ 57. Barbato L, Bocchetti M, Di Biase A, Regad T. Cancer Stem Cells and Targeting Strategies. Cells. 18 de agosto de 2019;8(8):E926. 58. Heidarian E, Keloushadi M. Antiproliferative and Anti-invasion Effects of Carvacrol on PC3 Human Prostate Cancer Cells through Reducing pSTAT3, pAKT, and pERK1/2 Signaling Proteins. Int J Prev Med. 2019;10:156. 59. Khan F, Khan I, Farooqui A, Ansari IA. Carvacrol Induces Reactive Oxygen Species (ROS) mediated Apoptosis Along with Cell Cycle Arrest at G0/G1 in Human Prostate Cancer Cells. Nutr Cancer. octubre de 2017;69(7):1075-87. 60. Papież MA, Krzyściak W. Biological Therapies in the Treatment of Cancer-Update and New Directions. Int J Mol Sci. 28 de octubre de 2021;22(21):11694. 61. Barrios CH, Reinert T, Werutsky G. Global Breast Cancer Research: Moving Forward. Am Soc Clin Oncol Educ Book. 23 de mayo de 2018;38:441-50. 62. Yeo SK, Guan JL. Breast Cancer: Multiple Subtypes within a Tumor? Trends Cancer. noviembre de 2017;3(11):753-60. 63. Zujewski JA, Dvaladze AL, Ilbawi A, Anderson BO, Luciani S, Stevens L, et al. Knowledge Summaries for Comprehensive Breast Cancer Control. J Glob Oncol. septiembre de 2018;4:1-7. 64. Arthur RS, Wang T, Xue X, Kamensky V, Rohan TE. Genetic Factors, Adherence to Healthy Lifestyle Behavior, and Risk of Invasive Breast Cancer Among Women in the UK Biobank. J Natl Cancer Inst. 10 de enero de 2020;112(9):893-901. 65. Li L, He L, Wu Y, Zhang Y. Carvacrol affects breast cancer cells through TRPM7 mediated cell cycle regulation. Life Sci. 1 de febrero de 2021;266:118894. 66. Mari A, Mani G, Nagabhishek SN, Balaraman G, Subramanian N, Mirza FB, et al. Carvacrol Promotes Cell Cycle Arrest and Apoptosis through PI3K/AKT Signaling Pathway in MCF-7 Breast Cancer Cells. Chin J Integr Med. septiembre de 2021;27(9):680-7. 67. Herrera-Calderon O, Yepes-Pérez AF, Quintero-Saumeth J, Rojas-Armas JP, Palomino-Pacheco M, Ortiz-Sánchez JM, et al. Carvacrol: An In Silico Approach of a Candidate Drug on HER2, PI3Kα, mTOR, hER-α, PR, and EGFR Receptors in the Breast Cancer. Evid Based Complement Alternat Med. 2020;2020:8830665. 68. Graham K, Unger E. Overcoming tumor hypoxia as a barrier to radiotherapy, chemotherapy and immunotherapy in cancer treatment. Int J Nanomedicine. 2018;13:6049-58. 69. Sampaio LA, Pina LTS, Serafini MR, Tavares DDS, Guimarães AG. Antitumor Effects of Carvacrol and Thymol: A Systematic Review. Front Pharmacol. 2021;12:702487. 70. Ospina LMP, Muñoz PB, Matulevich J, Teherán AA, Villamizar LB. Composition and Antimicrobial Activity of the Essential Oils of Three Plant Species from the Sabana of Bogota (Colombia): Myrcianthes leucoxyla, Vallea stipularis and Phyllanthus salviifolius. Nat Prod Commun. diciembre de 2016;11(12):1913-8. 71. Galán JV, Cid-Lucero A, Fernández RG. Efecto promotor del crecimiento micelial de Fusarium sp. y Aspergillus sp. en condiciones in vitro de extractos acuosos y etanólico de dos especies de Cylindropuntia. TECNOCIENCIA Chihuahua. 2020;14(3):126-41. 72. Deleanu M, Popa E, Popa M. Chemical Composition and Active Properties Evaluation of Wild Oregano (Origanum Vulgare) and Ginger (Zingiber Officinale-Roscoe) Essential Oils. Revista de Chimie -Bucharest- Original Edition-. 1 de agosto de 2018;69:1927-33. 73. Zhao Y, Yang YH, Ye M, Wang KB, Fan LM, Su FW. Chemical composition and antifungal activity of essential oil from Origanum vulgare against Botrytis cinerea. Food Chemistry. 15 de diciembre de 2021;365:130506. 74. Hou H, Zhang X, Zhao T, Zhou L. Effects of Origanum vulgare essential oil and its two main components, carvacrol and thymol, on the plant pathogen Botrytis cinerea. PeerJ. 14 de agosto de 2020;8:e9626. 75. Grbović F, Stanković MS, Ćurčić M, Đorđević N, Šeklić D, Topuzović M, et al. In Vitro Cytotoxic Activity of Origanum vulgare L. on HCT-116 and MDA-MB-231 Cell Lines. Plants (Basel). 25 de junio de 2013;2(3):371-8. 76. Makrane H, El Messaoudi M, Melhaoui A, El Mzibri M, Benbacer L, Aziz M. Cytotoxicity of the Aqueous Extract and Organic Fractions from Origanum majorana on Human Breast Cell Line MDA-MB-231 and Human Colon Cell Line HT-29. Adv Pharmacol Sci. 23 de agosto de 2018;2018:3297193. 77. Izham MNM, Hussin Y, Rahim NFC, Aziz MNM, Yeap SK, Rahman HS, et al. Physicochemical characterization, cytotoxic effect and toxicity evaluation of nanostructured lipid carrier loaded with eucalyptol. BMC Complementary Medicine and Therapies. 7 de octubre de 2021;21(1):254. 78. Luo Y, Wu JY, Lu MH, Shi Z, Na N, Di JM. Carvacrol Alleviates Prostate Cancer Cell Proliferation, Migration, and Invasion through Regulation of PI3K/Akt and MAPK Signaling Pathways. Oxid Med Cell Longev. 2016;2016:1469693. 79. Delgado C, Mendez-Callejas G, Celis C. Caryophyllene Oxide, the Active Compound Isolated from Leaves of Hymenaea courbaril L. (Fabaceae) with Antiproliferative and Apoptotic Effects on PC-3 Androgen-Independent Prostate Cancer Cell Line. Molecules. 12 de octubre de 2021;26(20):6142.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.proposalOriganum vulgarespa
dc.subject.proposalActividad antifúngicaspa
dc.subject.proposalActividad citotóxicaspa
dc.subject.proposalFusarium oxysporumspa
dc.subject.proposalBotrytis cinereaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_46ecspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/otherspa
dc.type.redcolhttps://purl.org/redcol/resource_type/INFspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional (CC BY 4.0)
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional (CC BY 4.0)