Publicación: Manejo de patología osteoarticular crónica con campos magnéticos pulsantes
dc.contributor.advisor | Forero Supelano, Víctor Hugo | |
dc.contributor.author | Elejalde Sánchez, Natalia Andrea | |
dc.contributor.author | García Pardo, Ginna Carolina | |
dc.contributor.author | Páez Sánchez, Claudia | |
dc.contributor.author | Villanueva Rodríguez, Andrea Julieth | |
dc.coverage.country | Colombia | |
dc.date.accessioned | 2022-12-07T22:49:29Z | |
dc.date.available | 2022-12-07T22:49:29Z | |
dc.date.issued | 2019 | |
dc.description | Coentiene: Ilustraciones, diagramas de flujo, esquemas y tablas | spa |
dc.description.abstract | La artrosis es la patología articular más frecuente en el mundo y produce efectos sobre la calidad de vida de quienes la padecen. Aunque existen diferentes alternativas terapéuticas no existe aún un único tratamiento para esta enfermedad y la búsqueda de nuevos manejos es un campo activo de investigación. La terapia con campos magnéticos pulsantes ha mostrado ser útil en el tratamiento de la artrosis, produce efectos no sólo sobre los síntomas sino también sobre los mecanismos fisiopatológicos de la enfermedad. La realización de esta revisión permitió identificar efectos a corto plazo de la terapia con campos magnéticos pulsantes en el manejo del dolor y de la artrosis, principalmente en las rodillas. | spa |
dc.description.degreelevel | Especialización | spa |
dc.description.degreename | Especialista en Terapéuticas Alternativas y Farmacología Vegetal | spa |
dc.description.program | Especialización en Terapéuticas Alternativas y Farmacología Vegetal | spa |
dc.format.extent | 54 hojas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | Elejalde Sánchez, N, García Pardo, G, Páez Sánchez, C, Villanueva Rodríguez, A. Manejo de patología osteoarticular crónica con campos magnéticos pulsantes. [Internet]. Fundación Universitaria Juan N. Corpas; 2019. 54 hojas. Recuperado a partir de: https://repositorio.juanncorpas.edu.co/handle/001/169 | spa |
dc.identifier.instname | Fundación Universitaria Juan N. Corpas | spa |
dc.identifier.reponame | Repositorio Institucional Fundación Universitaria Juan N. Corpas | spa |
dc.identifier.repourl | https://repositorio.juanncorpas.edu.co/ | spa |
dc.identifier.uri | https://repositorio.juanncorpas.edu.co/handle/001/169 | |
dc.language.iso | spa | spa |
dc.publisher | Fundación Universitaria Juan N. Corpas | spa |
dc.publisher.faculty | Escuela de Medicina | spa |
dc.relation.indexed | RedCol | spa |
dc.relation.references | 1. Fibel KH. State-of-the-Art management of knee osteoarthritis. World J Clin Cases [Internet]. 2015;3(2):89. Available from: http://www.wjgnet.com/2307- 8960/full/v3/i2/89.htm | spa |
dc.relation.references | 2. Grønhaug G, Hagfors J, Borch I, Østerås N, Hagen KB. Perceived quality of health care services among people with osteoarthritis – results from a nationwide survey. Patient Prefer Adherence [Internet]. 2015 Sep;1255. Available from: http://www.dovepress.com/perceived-quality-of- health-care-services-among-people-with-osteoarthr-peer-reviewed-article- PPA | spa |
dc.relation.references | 3. Hunt K, Ernst E. Evidence-based practice in British complementary and alternative medicine: Double standards? J Health Serv Res Policy [Internet]. 2009 Oct;14(4):219–23. Available from: http://journals.sagepub.com/doi/10.1258/jhsrp.2009.009009 | spa |
dc.relation.references | 4. Neogi T. The epidemiology and impact of pain in osteoarthritis. Osteoarthr Cartil [Internet]. 2013 Sep;21(9):1145–53. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1063458413007607 | spa |
dc.relation.references | 5. Maziarz A, Kocan B, Bester M, Budzik S, Cholewa M, Ochiya T, et al. How electromagnetic fields can influence adult stem cells: positive and negative impacts. Stem Cell Res Ther [Internet]. 2016 Dec 18;7(1):54. Available from: http://stemcellres.biomedcentral.com/articles/10.1186/s13287-016-0312-5 | spa |
dc.relation.references | 6. Pereira D, Ramos E, Branco J. Osteoarthritis. Acta Med Port [Internet]. 28(1):99–106. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25817486 | spa |
dc.relation.references | 7. Woolf AD, Pfleger B. Burden of major musculoskeletal conditions. Bull World Health Organ [Internet]. 2003;81(9):646–56. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14710506 | spa |
dc.relation.references | 8. Glyn-Jones S, Palmer AJR, Agricola R, Price AJ, Vincent TL, Weinans H, et al. Osteoarthritis. Lancet [Internet]. 2015 Jul;386(9991):376–87. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0140673614608023 | spa |
dc.relation.references | 9. Chen A, Gupte C, Akhtar K, Smith P, Cobb J. The Global Economic Cost of Osteoarthritis: How the UK Compares. Arthritis [Internet]. 2012 Oct 2;2012:1–6. Available from: https://www.hindawi.com/archive/2012/698709/ | spa |
dc.relation.references | 10. Palazzo C, Ravaud J-F, Papelard A, Ravaud P, Poiraudeau S. The Burden of Musculoskeletal Conditions. Chopra A, editor. PLoS One [Internet]. 2014 Mar 4;9(3):e90633. Available from: http://dx.plos.org/10.1371/journal.pone.0090633 | spa |
dc.relation.references | 11. Palazzo C, Nguyen C, Lefevre-Colau M-M, Rannou F, Poiraudeau S. Risk factors and burden of osteoarthritis. Ann Phys Rehabil Med [Internet]. 2016 Jun;59(3):134–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1877065716000245 | spa |
dc.relation.references | 12. Prieto-Alhambra D, Judge A, Javaid MK, Cooper C, Diez-Perez A, Arden NK. Incidence and risk factors for clinically diagnosed knee, hip and hand osteoarthritis: influences of age, gender and osteoarthritis affecting other joints. Ann Rheum Dis [Internet]. 2014 Sep;73(9):1659–64. Available from: http://ard.bmj.com/lookup/doi/10.1136/annrheumdis-2013-203355 | spa |
dc.relation.references | 13. Srikanth VK, Fryer JL, Zhai G, Winzenberg TM, Hosmer D, Jones G. A meta- analysis of sex differences prevalence, incidence and severity of osteoarthritis. Osteoarthr Cartil [Internet]. 2005 Sep;13(9):769–81. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1063458405001123 | spa |
dc.relation.references | 14. de Klerk BM, Schiphof D, Groeneveld FPMJ, Koes BW, van Osch GJVM, van Meurs JBJ, et al. No clear association between female hormonal aspects and osteoarthritis of the hand, hip and knee: a systematic review. Rheumatology [Internet]. 2009 Sep;48(9):1160–5. Available from: https://academic.oup.com/rheumatology/article- lookup/doi/10.1093/rheumatology/kep194 | spa |
dc.relation.references | 15. Silverwood V, Blagojevic-Bucknall M, Jinks C, Jordan JL, Protheroe J, Jordan KP. Current evidence on risk factors for knee osteoarthritis in older adults: a systematic review and meta-analysis. Osteoarthr Cartil [Internet]. 2015 Apr;23(4):507–15. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1063458414013429 | spa |
dc.relation.references | 16. Grotle M, Hagen KB, Natvig B, Dahl FA, Kvien TK. Obesity and osteoarthritis in knee, hip and/or hand: An epidemiological study in the general population with 10 years follow-up. BMC Musculoskelet Disord [Internet]. 2008 Dec 2;9(1):132. Available from: https://bmcmusculoskeletdisord.biomedcentral.com/articles/10.1186/1471- 2474-9-132 | spa |
dc.relation.references | 17. Cibrián Uhalte E, Wilkinson JM, Southam L, Zeggini E. Pathways to understanding the genomic aetiology of osteoarthritis. Hum Mol Genet [Internet]. 2017 Oct 1;26(R2):R193–201. Available from: https://academic.oup.com/hmg/article/26/R2/R193/4039909 | spa |
dc.relation.references | 18. Felson DT, Niu J, Clancy M, Aliabadi P, Sack B, Guermazi A, et al. Low levels of vitamin D and worsening of knee osteoarthritis: Results of two longitudinal studies. Arthritis Rheum [Internet]. 2007 Jan;56(1):129–36. Available from: http://doi.wiley.com/10.1002/art.22292 | spa |
dc.relation.references | 19. Morales-Ivorra I, Romera-Baures M, Roman-Viñas B, Serra-Majem L. Osteoarthritis and the Mediterranean Diet: A Systematic Review. Nutrients [Internet]. 2018 Aug 7;10(8):1030. Available from: http://www.mdpi.com/2072-6643/10/8/1030 | spa |
dc.relation.references | 20. Messina OD, Vidal Wilman M, Vidal Neira LF. Nutrition, osteoarthritis and cartilage metabolism. Aging Clin Exp Res [Internet]. 2019 Jun 13;31(6):807– 13. Available from: http://link.springer.com/10.1007/s40520-019-01191-w | spa |
dc.relation.references | 21. Lieberthal J, Sambamurthy N, Scanzello CR. Inflammation in joint injury and post-traumatic osteoarthritis. Osteoarthr Cartil [Internet]. 2015 Nov;23(11):1825–34. Available from: https://linkinghub.elsevier.com/retrieve/pii/S106345841501300X | spa |
dc.relation.references | 22. Poulsen E, Goncalves GH, Bricca A, Roos EM, Thorlund JB, Juhl CB. Knee osteoarthritis risk is increased 4-6 fold after knee injury – a systematic review and meta-analysis. Br J Sports Med [Internet]. 2019 May 9;bjsports-2018- 100022. Available from: http://bjsm.bmj.com/lookup/doi/10.1136/bjsports- 2018-100022 | spa |
dc.relation.references | 23. Yucesoy B, Charles LE, Baker B, Burchfiel CM. Occupational and genetic risk factors for osteoarthritis: a review. Work [Internet]. 2015 Jan 1;50(2):261–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24004806 | spa |
dc.relation.references | 24. Cerejo R, Dunlop DD, Cahue S, Channin D, Song J, Sharma L. The influence of alignment on risk of knee osteoarthritis progression according to baseline stage of disease. Arthritis Rheum [Internet]. 2002 Oct;46(10):2632– 6. Available from: http://doi.wiley.com/10.1002/art.10530 | spa |
dc.relation.references | 25. Moskalewski S, Hyc A, Jankowska-Steifer E, Osiecka-Iwan A. Formation of synovial joints and articular cartilage. Folia Morphol (Warsz) [Internet]. 2013 Aug;72(3):181–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24068678 | spa |
dc.relation.references | 26. Markatos K, Kaseta MK, Lallos SN, Korres DS, Efstathopoulos N. The anatomy of the ACL and its importance in ACL reconstruction. Eur J Orthop Surg Traumatol [Internet]. 2013 Oct 22;23(7):747–52. Available from: http://link.springer.com/10.1007/s00590-012-1079-8 | spa |
dc.relation.references | 27. Murray IR, Goudie EB, Petrigliano FA, Robinson CM. Functional Anatomy and Biomechanics of Shoulder Stability in the Athlete. Clin Sports Med [Internet]. 2013 Oct;32(4):607–24. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0278591913000598 | spa |
dc.relation.references | 28. Egund N, Jurik A. Anatomy and Histology of the Sacroiliac Joints. Semin Musculoskelet Radiol [Internet]. 2014 Jun 4;18(03):332–40. Available from: http://www.thieme-connect.de/DOI/DOI?10.1055/s-0034-1375574 | spa |
dc.relation.references | 29. Goldring MB, Marcu KB. Cartilage homeostasis in health and rheumatic diseases. Arthritis Res Ther [Internet]. 2009;11(3):224. Available from: http://arthritis-research.biomedcentral.com/articles/10.1186/ar2592 | spa |
dc.relation.references | 30. Abramson SB, Attur M. Developments in the scientific understanding of osteoarthritis. Arthritis Res Ther [Internet]. 2009;11(3):227. Available from: http://arthritis-research.biomedcentral.com/articles/10.1186/ar2655 | spa |
dc.relation.references | 31. Buckwalter JA, Roughley PJ, Rosenberg LC. Age-Related changes in cartilage proteoglycans: Quantitative electron microscopic studies. Microsc Res Tech [Internet]. 1994 Aug 1;28(5):398–408. Available from: http://doi.wiley.com/10.1002/jemt.1070280506 | spa |
dc.relation.references | 32. Kühn K, D’Lima DD, Hashimoto S, Lotz M. Cell death in cartilage. Osteoarthr Cartil [Internet]. 2004 Jan;12(1):1–16. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14697678 | spa |
dc.relation.references | 33. Aigner T, Hemmel M, Neureiter D, Gebhard PM, Zeiler G, Kirchner T, et al. Apoptotic cell death is not a widespread phenomenon in normal aging and osteoarthritic human articular knee cartilage: A study of proliferation, programmed cell death (apoptosis), and viability of chondrocytes in normal and osteoarthritic human knee carti. Arthritis Rheum [Internet]. 2001 Jun;44(6):1304–12. Available from: http://doi.wiley.com/10.1002/1529- 0131%28200106%2944%3A6%3C1304%3A%3AAID- ART222%3E3.0.CO%3B2-T | spa |
dc.relation.references | 34. Carlo M Del, Loeser RF. Increased oxidative stress with aging reduces chondrocyte survival: Correlation with intracellular glutathione levels. Arthritis Rheum [Internet]. 2003 Dec;48(12):3419–30. Available from: http://doi.wiley.com/10.1002/art.11338 | spa |
dc.relation.references | 35. Martin JA, Buckwalter JA. Aging, articular cartilage chondrocyte senescence and osteoarthritis. Biogerontology [Internet]. 2002;3(5):257–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12237562 | spa |
dc.relation.references | 36. Aurich M, Poole AR, Reiner A, Mollenhauer C, Margulis A, Kuettner KE, et al. Matrix homeostasis in aging normal human ankle cartilage. Arthritis Rheum [Internet]. 2002 Nov;46(11):2903–10. Available from: http://doi.wiley.com/10.1002/art.10611 | spa |
dc.relation.references | 37. Li Y, Wei X, Zhou J, Wei L. The Age-Related Changes in Cartilage and Osteoarthritis. Biomed Res Int [Internet]. 2013;2013:1–12. Available from: http://www.hindawi.com/journals/bmri/2013/916530/ | spa |
dc.relation.references | 38. Scharstuhl A, van Beuningen HM, Vitters EL, van der Kraan PM, van den Berg WB. Loss of transforming growth factor counteraction on interleukin 1 mediated effects in cartilage of old mice. Ann Rheum Dis [Internet]. 2002 Dec;61(12):1095–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12429542 | spa |
dc.relation.references | 39. Doré S, Pelletier JP, DiBattista JA, Tardif G, Brazeau P, Martel-Pelletier J. Human osteoarthritic chondrocytes possess an increased number of insulin- like growth factor 1 binding sites but are unresponsive to its stimulation. Possible role of IGF-1-binding proteins. Arthritis Rheum [Internet]. 1994 Feb;37(2):253–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7510486 | spa |
dc.relation.references | 40. Marie PJ, Kassem M. Extrinsic Mechanisms Involved in Age-Related Defective Bone Formation. J Clin Endocrinol Metab [Internet]. 2011 Mar 1;96(3):600–9. Available from: https://academic.oup.com/jcem/article/96/3/600/2596461 | spa |
dc.relation.references | 41. Zhang YE. Mechanistic insight into contextual TGF-β signaling. Curr Opin Cell Biol [Internet]. 2018 Apr;51:1–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0955067417301230 | spa |
dc.relation.references | 42. van der Kraan PM, Goumans M-J, Blaney Davidson E, ten Dijke P. Age- dependent alteration of TGF-β signalling in osteoarthritis. Cell Tissue Res [Internet]. 2012 Jan 4;347(1):257–65. Available from: http://link.springer.com/10.1007/s00441-011-1194-6 | spa |
dc.relation.references | 43. Surapaneni KM, Venkataramana G. Status of lipid peroxidation, glutathione, ascorbic acid, vitamin E and antioxidant enzymes in patients with osteoarthritis. Indian J Med Sci [Internet]. 2007 Jan;61(1):9–14. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17197733 | spa |
dc.relation.references | 44. Ostalowska A, Birkner E, Wiecha M, Kasperczyk S, Kasperczyk A, Kapolka D, et al. Lipid peroxidation and antioxidant enzymes in synovial fluid of patients with primary and secondary osteoarthritis of the knee joint. Osteoarthr Cartil [Internet]. 2006 Feb;14(2):139–45. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1063458405002359 | spa |
dc.relation.references | 45. Karan A, Karan MA, Vural P, Erten N, Tas�ioglu C, Aksoy C, et al. Synovial fluid nitric oxide levels in patients with knee osteoarthritis. Clin Rheumatol [Internet]. 2003 Dec 1;22(6):397–9. Available from: http://link.springer.com/10.1007/s10067-003-0761-y | spa |
dc.relation.references | 46. Sarban S, Kocyigit A, Yazar M, Isikan UE. Plasma total antioxidant capacity, lipid peroxidation, and erythrocyte antioxidant enzyme activities in patients with rheumatoid arthritis and osteoarthritis. Clin Biochem [Internet]. 2005 Nov;38(11):981–6. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0009912005002304 | spa |
dc.relation.references | 47. Honsawek S. Oxidative Stress, Vitamin E, and Antioxidant Capacity in Knee Osteoarthritis. J Clin DIAGNOSTIC Res [Internet]. 2013; Available from: http://www.jcdr.net/article_fulltext.asp?issn=0973- 709x&year=2013&volume=7&issue=9&page=1855&issn=0973- 709x&id=3333 | spa |
dc.relation.references | 48. Henrotin Y, Kurz B, Aigner T. Oxygen and reactive oxygen species in cartilage degradation: friends or foes? Osteoarthr Cartil [Internet]. 2005 Aug;13(8):643–54. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1063458405000981 | spa |
dc.relation.references | 49. Abramson SB. Osteoarthritis and nitric oxide. Osteoarthr Cartil [Internet]. 2008 Jun;16:S15–20. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1063458408600084 | spa |
dc.relation.references | 50. E X, Cao Y, Meng H, Qi Y, Du G, Xu J, et al. Dendritic Cells of Synovium in Experimental Model of Osteoarthritis of Rabbits. Cell Physiol Biochem [Internet]. 2012;30(1):23–32. Available from: https://www.karger.com/Article/FullText/339046 | spa |
dc.relation.references | 51. Rigoglou S, Papavassiliou AG. The NF-κB signalling pathway in osteoarthritis. Int J Biochem Cell Biol [Internet]. 2013 Nov;45(11):2580–4. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1357272513002860 | spa |
dc.relation.references | 52. Oeckinghaus A, Ghosh S. The NF- B Family of Transcription Factors and Its Regulation. Cold Spring Harb Perspect Biol [Internet]. 2009 Oct 1;1(4):a000034–a000034. Available from: http://cshperspectives.cshlp.org/lookup/doi/10.1101/cshperspect.a000034 | spa |
dc.relation.references | 53. Hayden MS, Ghosh S. Shared Principles in NF-κB Signaling. Cell [Internet]. 2008 Feb;132(3):344–62. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0092867408001207 | spa |
dc.relation.references | 54. Marcu KB, Otero M, Olivotto E, Borzi RM, Goldring MB. NF-kappaB signaling: multiple angles to target OA. Curr Drug Targets [Internet]. 2010 May;11(5):599–613. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20199390 | spa |
dc.relation.references | 55. Niederberger E, Geisslinger G. The IKK-NF- B pathway: a source for novel molecular drug targets in pain therapy? FASEB J [Internet]. 2008 Jun 20;22(10):3432–42. Available from: http://www.fasebj.org/cgi/doi/10.1096/fj.08-109355 | spa |
dc.relation.references | 56. Mariani E, Pulsatelli L, Facchini A. Signaling Pathways in Cartilage Repair. Int J Mol Sci [Internet]. 2014 May 15;15(5):8667–98. Available from: http://www.mdpi.com/1422-0067/15/5/8667/ | spa |
dc.relation.references | 57. Richter F, Natura G, Löser S, Schmidt K, Viisanen H, Schaible H-G. Tumor necrosis factor causes persistent sensitization of joint nociceptors to mechanical stimuli in rats. Arthritis Rheum [Internet]. 2010 Dec;62(12):3806– 14. Available from: http://doi.wiley.com/10.1002/art.27715 | spa |
dc.relation.references | 58. Schuelert N, McDougall JJ. Electrophysiological evidence that the vasoactive intestinal peptide receptor antagonist VIP6–28 reduces nociception in an animal model of osteoarthritis. Osteoarthr Cartil [Internet]. 2006 Nov;14(11):1155–62. Available from: http://linkinghub.elsevier.com/retrieve/pii/S106345840600121X | spa |
dc.relation.references | 59. Mapp PI, Walsh DA, Bowyer J, Maciewicz RA. Effects of a metalloproteinase inhibitor on osteochondral angiogenesis, chondropathy and pain behavior in a rat model of osteoarthritis. Osteoarthr Cartil [Internet]. 2010 Apr;18(4):593– 600. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1063458409003288 | spa |
dc.relation.references | 60. Vuolteenaho K, Koskinen A, Moilanen E. Leptin - A Link between Obesity and Osteoarthritis. Applications for Prevention and Treatment. Basic Clin Pharmacol Toxicol [Internet]. 2014 Jan;114(1):103–8. Available from: http://doi.wiley.com/10.1111/bcpt.12160 | spa |
dc.relation.references | 61. Im H-J, Kim J-S, Li X, Kotwal N, Sumner DR, van Wijnen AJ, et al. Alteration of sensory neurons and spinal response to an experimental osteoarthritis pain model. Arthritis Rheum [Internet]. 2010 Jun 15;62(10):2995–3005. Available from: http://doi.wiley.com/10.1002/art.27608 | spa |
dc.relation.references | 62. Rodriguez-Raecke R, Niemeier A, Ihle K, Ruether W, May A. Brain Gray Matter Decrease in Chronic Pain Is the Consequence and Not the Cause of Pain. J Neurosci [Internet]. 2009 Nov 4;29(44):13746–50. Available from: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.3687-09.2009 | spa |
dc.relation.references | 63. Zhang R-X, Ren K, Dubner R. Osteoarthritis pain mechanisms: basic studies in animal models. Osteoarthr Cartil [Internet]. 2013 Sep;21(9):1308–15. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1063458413008492 | spa |
dc.relation.references | 64. Pratiwi AI. Diagnosis and treatment osteoarthritis. Diagnosis Treat Osteoarthr. 2015; | spa |
dc.relation.references | 65. Manek NJ, Lane NE. Osteoarthritis: current concepts in diagnosis and management. Am Fam Physician [Internet]. 2000 Mar 15;61(6):1795–804. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10750883 | spa |
dc.relation.references | 66. Michael JW-P, Schlüter-Brust KU, Eysel P. The Epidemiology, Etiology, Diagnosis, and Treatment of Osteoarthritis of the Knee. Dtsch Aerzteblatt Online. 2010; | spa |
dc.relation.references | 67. Glyn-Jones S, Palmer AJR, Agricola R, Price AJ, Vincent TL, Weinans H, et al. Osteoarthritis. In: The Lancet. 2015. | spa |
dc.relation.references | 68. Sipe JD. Acute-phase proteins in osteoarthritis. Semin Arthritis Rheum [Internet]. 1995 Oct;25(2):75–86. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0049017295800204 | spa |
dc.relation.references | 69. Blum A, Raymond A, Teixeira P. Strategy and optimization of diagnostic imaging in painful hip in adults. Orthop Traumatol Surg Res [Internet]. 2015 Feb;101(1):S85–99. Available from: https://linkinghub.elsevier.com/retrieve/pii/S187705681400320X | spa |
dc.relation.references | 70. Iagnocco A. Ultrasound in osteoarthritis. Clin Exp Rheumatol [Internet]. 32(1 Suppl 80):S48-52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24528550 | spa |
dc.relation.references | 71. Nieminen MT, Casula V, Nevalainen MT, Saarakkala S. Osteoarthritis year in review 2018: imaging. Osteoarthr Cartil [Internet]. 2019 Mar;27(3):401–11. Available from: https://linkinghub.elsevier.com/retrieve/pii/S106345841831584X | spa |
dc.relation.references | 72. Hayashi D, Roemer FW, Guermazi A. Magnetic resonance imaging assessment of knee osteoarthritis: current and developing new concepts and techniques. Clin Exp Rheumatol [Internet]. 37 Suppl 1(5):88–95. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31621571 | spa |
dc.relation.references | 73. Omoumi P, Mercier GA, Lecouvet F, Simoni P, Vande Berg BC. CT Arthrography, MR Arthrography, PET, and Scintigraphy in Osteoarthritis. Radiol Clin North Am [Internet]. 2009 Jul;47(4):595–615. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0033838909000852 | spa |
dc.relation.references | 74. Altman R, Asch E, Bloch D, Bole G, Borenstein D, Brandt K, et al. Development of criteria for the classification and reporting of osteoarthritis: Classification of osteoarthritis of the knee. Arthritis Rheum. 1986; | spa |
dc.relation.references | 75. Altman R, Alarcon G, Appelrouth D, Bloch D, Borenstein D, Brandt K, et al. The American College of Rheumatology criteria for the classification and reporting of osteoarthritis of the hand. Arthritis Rheum [Internet]. 1990 Nov;33(11):1601–10. Available from: http://doi.wiley.com/10.1002/art.1780331101 | spa |
dc.relation.references | 76. Altman R, Alarcón G, Appelrouth D, Bloch D, Borenstein D, Brandt K, et al. The American College of Rheumatology criteria for the classification and reporting of osteoarthritis of the hip. Arthritis Rheum [Internet]. 1991 May;34(5):505–14. Available from: http://doi.wiley.com/10.1002/art.1780340502 | spa |
dc.relation.references | 77. Zayas Guillot JD. Magnetoterapia, su aplicación en la medicina. Rev Cuba Med Mil. 2001; | spa |
dc.relation.references | 78. Cordero M, García J. Efectos y aplicaciones de la magnetoterapia. Med Física Rehabil Espec. 2012; | spa |
dc.relation.references | 79. Brizhik L, Ferroni L, Chiara G, Fermi E. On the Mechanisms of Wound Healing by Magnetic Therapy: The Working Principle of Therapeutic Magnetic Resonance. Int J Biophys. 2016;6(3):27–43. | spa |
dc.relation.references | 80. Odell RH, Sorgnard RE. Anti-inflammatory effects of electronic signal treatment. Pain Physician [Internet]. 11(6):891–907. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19057635 | spa |
dc.relation.references | 81. Pilla AA. Nonthermal electromagnetic fields: From first messenger to therapeutic applications. Electromagn Biol Med [Internet]. 2013 Jun 15;32(2):123–36. Available from: http://www.tandfonline.com/doi/full/10.3109/15368378.2013.776335 | spa |
dc.relation.references | 82. Markov M. XXIst century magnetotherapy. Electromagn Biol Med [Internet]. 2015 Jul 3;34(3):190–6. Available from: http://www.tandfonline.com/doi/full/10.3109/15368378.2015.1077338 | spa |
dc.relation.references | 83. Chang C-H, Loo S-T, Liu H-L, Fang H-W, Lin H-Y. Can low frequency electromagnetic field help cartilage tissue engineering? J Biomed Mater Res Part A [Internet]. 2009;9999A:NA-NA. Available from: http://doi.wiley.com/10.1002/jbm.a.32405 | spa |
dc.relation.references | 84. Chang S-H, Hsiao Y-W, Lin H-Y. Low-Frequency Electromagnetic Field Exposure Accelerates Chondrocytic Phenotype Expression on Chitosan Substrate. Orthopedics [Internet]. 2011 Jan 3; Available from: http://www.slackinc.com/doi/resolver.asp?doi=10.3928/01477447-20101123- 10 | spa |
dc.relation.references | 85. Bobacz K. Effect of pulsed electromagnetic fields on proteoglycan biosynthesis of articular cartilage is age dependent. Ann Rheum Dis [Internet]. 2005 Nov 3;65(7):949–51. Available from: http://ard.bmj.com/cgi/doi/10.1136/ard.2005.037622 | spa |
dc.relation.references | 86. De Mattei M, Fini M, Setti S, Ongaro A, Gemmati D, Stabellini G, et al. Proteoglycan synthesis in bovine articular cartilage explants exposed to different low-frequency low-energy pulsed electromagnetic fields. Osteoarthr Cartil [Internet]. 2007 Feb;15(2):163–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1063458406002068 | spa |
dc.relation.references | 87. Veronesi F, Fini M, Giavaresi G, Ongaro A, De Mattei M, Pellati A, et al. Experimentally induced cartilage degeneration treated by pulsed electromagnetic field stimulation; an in vitro study on bovine cartilage. BMC Musculoskelet Disord [Internet]. 2015 Dec 20;16(1):308. Available from: http://www.biomedcentral.com/1471-2474/16/308 | spa |
dc.relation.references | 88. Fioravanti A. Biochemical and morphological study of human articular chondrocytes cultivated in the presence of pulsed signal therapy. Ann Rheum Dis [Internet]. 2002 Nov 1;61(11):1032–3. Available from: http://ard.bmj.com/cgi/doi/10.1136/ard.61.11.1032 | spa |
dc.relation.references | 89. Fitzsimmons RJ, Gordon SL, Kronberg J, Ganey T, Pilla AA. A pulsing electric field (PEF) increases human chondrocyte proliferation through a transduction pathway involving nitric oxide signaling. J Orthop Res [Internet]. 2008 Jun;26(6):854–9. Available from: http://doi.wiley.com/10.1002/jor.20590 | spa |
dc.relation.references | 90. Anbarasan S, Baraneedharan U, Paul S, Kaur H, Rangaswami S, Bhaskar E. Low dose short duration pulsed electromagnetic field effects on cultured human chondrocytes: An experimental study. Indian J Orthop [Internet]. 2016;50(1):87. Available from: http://www.ijoonline.com/text.asp?2016/50/1/87/173522 | spa |
dc.relation.references | 91. Vincenzi F, Targa M, Corciulo C, Gessi S, Merighi S, Setti S, et al. Pulsed Electromagnetic Fields Increased the Anti-Inflammatory Effect of A2A and A3 Adenosine Receptors in Human T/C-28a2 Chondrocytes and hFOB 1.19 Osteoblasts. Ojcius DM, editor. PLoS One [Internet]. 2013 May 31;8(5):e65561. Available from: https://dx.plos.org/10.1371/journal.pone.0065561 | spa |
dc.relation.references | 92. Koczy B, Stołtny T, Pasek J, Leksowska–Pawliczek M, Czech S, Ostałowska A, et al. Evaluation of β-endorphin concentration, mood, and pain intensity in men with idiopathic hip osteoarthritis treated with variable magnetic field. Medicine (Baltimore) [Internet]. 2019 Jul;98(30):e16431. Available from: http://insights.ovid.com/crossref?an=00005792-201907260-00018 | spa |
dc.relation.references | 93. Özgüçlü E, Çetin A, Çetin M, Calp E. Additional effect of pulsed electromagnetic field therapy on knee osteoarthritis treatment: a randomized, placebo-controlled study. Clin Rheumatol [Internet]. 2010 Aug 16;29(8):927– 31. Available from: http://link.springer.com/10.1007/s10067-010-1453-z | spa |
dc.relation.references | 94. Dündar Ü, Aşık G, Ulaşlı AM, Sınıcı Ş, Yaman F, Solak Ö, et al. Assessment of pulsed electromagnetic field therapy with Serum YKL-40 and ultrasonography in patients with knee osteoarthritis. Int J Rheum Dis [Internet]. 2016 Mar;19(3):287–93. Available from: http://doi.wiley.com/10.1111/1756-185X.12565 | spa |
dc.relation.references | 95. Adravanti P, Nicoletti S, Setti S, Ampollini A, de Girolamo L. Effect of pulsed electromagnetic field therapy in patients undergoing total knee arthroplasty: a randomised controlled trial. Int Orthop [Internet]. 2014 Feb 20;38(2):397– 403. Available from: http://link.springer.com/10.1007/s00264-013-2216-7 | spa |
dc.relation.references | 96. Ay S, Evcik D. The effects of pulsed electromagnetic fields in the treatment of knee osteoarthritis: a randomized, placebo-controlled trial. Rheumatol Int [Internet]. 2009 Apr 18;29(6):663–6. Available from: http://link.springer.com/10.1007/s00296-008-0754-x | spa |
dc.relation.references | 97. Sutbeyaz ST, Sezer N, Koseoglu BF. The effect of pulsed electromagnetic fields in the treatment of cervical osteoarthritis: a randomized, double-blind, sham-controlled trial. Rheumatol Int [Internet]. 2006 Feb;26(4):320–4. Available from: http://link.springer.com/10.1007/s00296-005-0600-3 | spa |
dc.relation.references | 98. Pipitone N, Scott DL. Magnetic Pulse Treatment for Knee Osteoarthritis: A Randomised, Double-Blind, Placebo-Controlled Study. Curr Med Res Opin [Internet]. 2001 Jan;17(3):190–6. Available from: http://www.tandfonline.com/doi/full/10.1185/0300799039117061 | spa |
dc.relation.references | 99. Bagnato GL, Miceli G, Marino N, Sciortino D, Bagnato GF. Pulsed electromagnetic fields in knee osteoarthritis: a double blind, placebo- controlled, randomized clinical trial. Rheumatology [Internet]. 2016 Apr;55(4):755–62. Available from: https://academic.oup.com/rheumatology/article- lookup/doi/10.1093/rheumatology/kev426 | spa |
dc.relation.references | 100. Laufer Y, Zilberman R, Porat R, Nahir AM. Effect of pulsed short-wave diathermy on pain and function of subjects with osteoarthritis of the knee: a placebo-controlled double-blind clinical trial. Clin Rehabil [Internet]. 2005 May;19(3):255–63. Available from: http://journals.sagepub.com/doi/10.1191/0269215505cr864oa | spa |
dc.relation.references | 101. Nelson FR, Zvirbulis R, Pilla AA. Non-invasive electromagnetic field therapy produces rapid and substantial pain reduction in early knee osteoarthritis: a randomized double-blind pilot study. Rheumatol Int [Internet]. 2013 Aug 27;33(8):2169–73. Available from: http://link.springer.com/10.1007/s00296- 012-2366-8 | spa |
dc.relation.references | 102. Thamsborg G, Florescu A, Oturai P, Fallentin E, Tritsaris K, Dissing S. Treatment of knee osteoarthritis with pulsed electromagnetic fields: a randomized, double-blind, placebo-controlled study. Osteoarthr Cartil [Internet]. 2005 Jul;13(7):575–81. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1063458405000609 | spa |
dc.relation.references | 103. Pavlovic A, Djurasic L. The effect of low frequency pulsing electromagnetic field in treatment of patients with knee joint osteoarthritis. Acta Chir Iugosl [Internet]. 2012;59(3):81–3. Available from: http://www.doiserbia.nb.rs/Article.aspx?ID=0354-950X1203081P | spa |
dc.relation.references | 104. Wuschech H, von Hehn U, Mikus E, Funk RH. Effects of PEMF on patients with osteoarthritis: Results of a prospective, placebo-controlled, double-blind study. Bioelectromagnetics [Internet]. 2015 Dec;36(8):576–85. Available from: http://doi.wiley.com/10.1002/bem.21942 | spa |
dc.relation.references | 105. Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. Lancet [Internet]. 2019 Apr;393(10182):1745–59. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0140673619304179 | spa |
dc.relation.references | 106. Li S, Yu B, Zhou D, He C, Zhuo Q, Hulme JM. Electromagnetic fields for treating osteoarthritis. Cochrane Database Syst Rev [Internet]. 2013 Dec 14; Available from: http://doi.wiley.com/10.1002/14651858.CD003523.pub2 | spa |
dc.relation.references | 107. Vavken P, Arrich F, Schuhfried O, Dorotka R. Effectiveness of pulsed electromagnetic field therapy in the management of osteoarthritis of the knee: A meta-analysis of randomized controlled trials. J Rehabil Med [Internet]. 2009;41(6):406–11. Available from: https://medicaljournals.se/jrm/content/abstract/10.2340/16501977-0374 | spa |
dc.relation.references | 108. Massari L. Effects of Electrical Physical Stimuli on Articular Cartilage. J Bone Jt Surg [Internet]. 2007 Oct 1;89(suppl_3):152. Available from: http://jbjs.org/cgi/doi/10.2106/JBJS.G.00581 | spa |
dc.relation.references | 109. Fini M, Giavaresi G, Carpi A, Nicolini A, Setti S, Giardino R. Effects of pulsed electromagnetic fields on articular hyaline cartilage: review of experimental and clinical studies. Biomed Pharmacother [Internet]. 2005 Aug;59(7):388– 94. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0753332205001162 | spa |
dc.relation.references | 110. Savović J, Turner RM, Mawdsley D, Jones HE, Beynon R, Higgins JPT, et al. Association Between Risk-of-Bias Assessments and Results of Randomized Trials in Cochrane Reviews: The ROBES Meta-Epidemiologic Study. Am J Epidemiol [Internet]. 2018 May 1;187(5):1113–22. Available from: https://academic.oup.com/aje/article/187/5/1113/4604571 | spa |
dc.rights | Todos los derechos reservados conforme a la ley. Se permite la reproducción citando fuente. El pensamiento que se expresa en esta obra, es exclusiva responsabilidad de los autores y no compromete la ideología de la Fundación Universitaria Juan N. Corpas. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | spa |
dc.rights.license | Atribución 4.0 Internacional (CC BY 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.mesh | Osteoartritis - Campos Magnéticos | |
dc.subject.mesh | Reumatología - Terapias Complementarias - Tratamiento | |
dc.subject.mesh | Campos magnéticos - Sistema Musculoesquelético | |
dc.subject.proposal | Artrosis - Campos magnéticos | spa |
dc.subject.proposal | Terapia con campos magnéticos | spa |
dc.title | Manejo de patología osteoarticular crónica con campos magnéticos pulsantes | spa |
dc.type | Trabajo de grado - Especialización | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_46ec | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/other | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/INF | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dcterms.audience | Comunidad Académica Universitaria | spa |
dspace.entity.type | Publication |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- NataliaAndreaElejaldeSánchez_2019.pdf
- Tamaño:
- 3.02 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Manejo de patología osteoarticular crónica con campos magnéticos pulsantes
Bloque de licencias
1 - 1 de 1
Cargando...

- Nombre:
- license.txt
- Tamaño:
- 14.45 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: