Publicación:
Fisiopatología de la sepsis por bacterias gram negativas: bases moleculares

dc.contributor.authorMéndez Fandiño, Yardani Rafaelspa
dc.contributor.authorBarrera C., María Claudiaspa
dc.date.accessioned2015-12-15T00:00:00Z
dc.date.accessioned2025-08-05T14:24:49Z
dc.date.available2015-12-15T00:00:00Z
dc.date.available2025-08-05T14:24:49Z
dc.date.issued2015-12-15
dc.description.abstractLa sepsis constituye un complejo síndrome en el que a consecuencia de una respuesta anómala del huésped frente a una infección se desencadenan una serie de mecanismos fi siopatológicos celulares y moleculares que se traducirán en el daño multiorgánico del paciente y su respectivas manifestaciones clínicas. Las bacterias gram negativas, gracias al lipopolisacárido (LPS), principal constituyente de su membrana externa son reconocidas por moléculas como la proteína de unión al lipopolisacàrido (LBP) y por complejos de receptores de membrana celular en el huésped que reconocen su estructura antigénica como son el TLR4, el CD14 y la MD2, dando lugar, por medio de diferentes vías de señalización mieloide dependiente (MyD88) y mieloide independiente o TRIF, a la activación de una serie de kinasas que fi nalmente a través de vías de señalización intracelular como NF – kB, generarán cambios transcripcionales que inducirán la producción de citocinas pro infl amatorias, que explican el Síndrome de respuesta inflamatoria sistémica (SIRS) y las antinfl amatorias, que explican el síndrome de repuesta anti infl amatorio compensatorio (CARS), ambos constituyen las fases de la sepsis a través de los cuales pasa el paciente séptico en diferentes momentos del proceso. Todos estos procesos fisiopatológicos moleculares de la sepsis son los que darán como resultado cambios en el endotelio, la microvasculatura, el sistema del complemento, la coagulación y finalmente en cada uno de los órganos del paciente las diferentes manifestaciones clínicas que desde scores de valoración del paciente, como el SOFA, permiten identificar al paciente en sepsis, su pronóstico y directrices acerca del tratamiento. Es así como la comprensión de las bases fisiopatológicas moleculares de las sepsis por gram negativos constituyen hoy en día la base para su definición, la comprensión de la clínica y el punto de partida para mejoras terapéuticas en el manejo de la sepsis, traducida en la supervivencia del paciente.spa
dc.description.abstractSepsis is a complex syndrome in which as a consequence of an abnormal response of the host against an infection, a series of cellular and molecular pathophysiological mechanisms are triggered, resulting in the multiorgan damage of the patient and their respective clinical manifestations. Gram-negative bacteria, due to the presence of lipopolysaccharide (LPS), the main constituent of its outer membrane, are recognized by molecules such as lipopolysaccharide binding protein (LBP) and complexes of cell membrane receptors in the host that recognize its structure Antigenic as are the TLR4, CD14 and MD2, giving rise, through different pathways of signaling dependent myeloid (MyD88) and independent myeloid or TRIF, to the activation of a series of kinases that fi nally through intracellular signaling pathways Such as NF - kB, will generate transcriptional changes that will induce the production of pro - infl ammatory cytokines, which explain the Systemic Inflammatory Response Syndrome (SIRS) and the anti - inflammatory drugs that explain the compensatory anti infl ammatory response syndrome (CARS) of the sepsis through which the septic patient passes in different moments of the process or. All these molecular pathophysiological processes of sepsis are those that will result in changes in the endothelium, the microvasculature, the complement system, the coagulation and fi nally in each one of the organs of the patient the different clinical manifestations that from scores of the patient’s evaluation, such as the SOFA, identify the patient in sepsis, their prognosis and treatment guidelines. Thus, the understanding of the molecular pathophysiological bases of gram-negative sepsis is nowadays the basis for its defi nition, the understanding of the clinic and the starting point for therapeutic improvements in the management of sepsis, translated into survival of the patient.eng
dc.format.mimetypeapplication/pdfspa
dc.identifier.doi10.26752/cuarzo.v21.n2.138
dc.identifier.eissn2500-7181
dc.identifier.issn0121-2133
dc.identifier.urihttps://repositorio.juanncorpas.edu.co/handle/001/376
dc.identifier.urlhttps://doi.org/10.26752/cuarzo.v21.n2.138
dc.language.isospaspa
dc.publisherFundación Universitaria Juan N. Corpasspa
dc.relation.bitstreamhttps://revistas.juanncorpas.edu.co/index.php/cuarzo/article/download/138/138
dc.relation.citationendpage103
dc.relation.citationissue2spa
dc.relation.citationstartpage88
dc.relation.citationvolume21spa
dc.relation.ispartofjournalRevista Cuarzospa
dc.relation.referencesSinger M, Deutschman C, Warren C, Shankar-Hari M, Annane D,Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016; 315(8): 801-810.spa
dc.relation.referencesRamachandran, G. Gram-positive and gram-negative bacterial toxins in sepsis A brief review. Virulence. 2014; 5(1): 213–218.spa
dc.relation.referencesRabirad N, Mohammadpoor M, Lari AR, Shojaie A, Bayat R, et al. Antimicrobial susceptibility patterns of the gram-negative bacteria isolated from septicemia in Children’s Medical Center, Tehran, Iran. J Prev Med Hyg. 2014;55(1):23-6.spa
dc.relation.referencesPérez M, Sánchez J.J. Actualización de la Sepsis en Adultos. Código Sepsis [Internet]. Universidad Internacional de Andalucía. [20 Mayo 2016] 2014. Disponible en: http://dspace.unia.es/bitstream/handle/10334/3418/0607_P%C3%A9rez.pdf?sequence=3spa
dc.relation.referencesMak T, Brüggemann H. Vimentin in Bacterial Infections. Cells. 2016;5(2):1-8.spa
dc.relation.referencesDo Vale A, Cabanes D, Sousa. Bacterial Toxins as Pathogen Weapons Against Phagocytes. Frontiers in Microbiology. 2016;7(42):1-21.spa
dc.relation.referencesAdams P, Lamoureux L, Swingle L, Mukundan K, Montan G. Lipopolysaccharide-Induced Dynamic Lipid Membrane Reorganization: Tubules, Perforations, and Stacks. Biophysical Journal. 2014;106:2395–2407.spa
dc.relation.referencesSteimle A, Autenrieth I, Frick J.S. Structure and function: Lipid A modifications in commensals and pathogens. Int. J. Med. Microbiol. 2016; 306(5):290-301.spa
dc.relation.referencesHarm S, Gabor F, Hartmann J. Low-dose polymyxin: an option for therapy of Gram-negative sepsis. Innate Immunity. 2016;22(4):274–283.spa
dc.relation.referencesBand V, Weiss D. Mechanisms of Antimicrobial Peptide Resistance in Gram-Negative Bacteria. Antibiotics. 2015;4:18-41.spa
dc.relation.referencesCarrillo R.C, Tapia J, Peña C.A, Kim Kohd M.J, Jaime A.R, Montalvo E. Bases moleculares de la sepsis. Revista de la Facultad de Medicina de la UNAM. 2014;57(3):1-13.spa
dc.relation.referencesCastillo-Juárez I, Maeda T, Mandujano-Tinoco E, Tomás M, Pérez- Eretza B, García-Contreras S.J, et al. Role of quorum sensing in bacterial infections. World J Clin Cases. 2015;3(7):575-598.spa
dc.relation.referencesMarch Rossello´ a G.A, Eiros Bouza J.M. Quorum sensing en bacterias y levaduras. Med Clin (Barc). 2013;141(8):353–357.spa
dc.relation.referencesReuter K, Steinbach A, Helms V. Interfering with Bacterial Quorum Sensing. Perspectives in Medicinal Chemistry 2016;8:1-15.spa
dc.relation.referencesPrieto A, Urcola I, Blanco J, Dahbi G, Muniesa M, Quirós P, et al. Tracking bacterial virulence: global modulators as indicators. Scientifi c Reports. 2016;6(25973):1-11.spa
dc.relation.referencesYamamoto H, Oda M, Kanno M, Tamashiro S, Tamura I, Yoneda T, et al. Chemical Hybridization of Vizantin and Lipid A to Generate a Novel LPS Antagonist. Chem. Pharm. Bull. 2016;64:246–257.spa
dc.relation.referencesOda M, Yamamoto H, Shibutani M, Nakano M, Yabiku K, Tarui T, et al. Vizantin Inhibits Endotoxin-Mediated Immune Responses via the TLR 4/MD-2 Complex. J Immunol. 2014;193:4507-4514.spa
dc.relation.referencesMartinez de Tejada G, Heinbockel L, Ferrer-Espada R, Heine H, Alexander C, Bárcena-Varela S, et al. Lipoproteins/peptides are sepsisinducing toxins from bacteria that can be neutralized by synthetic anti-endotoxin peptides. Scientifi c Reports. 2015;5(14292):1-15.spa
dc.relation.referencesChang Y, Tsai M, Huey-Herng Sheu W, Hsieh S, Chiang A. The Therapeutic Potential and Mechanisms of Action of Quercetin in Relation to Lipopolysaccharide-Induced Sepsis In Vitro and In Vivo. PLOS ONE. November 2013;8(11):1-13.spa
dc.relation.referencesTakashima K, Matsushima M, Hashimoto K, Nose H, Sato M, Hashimoto N, et al. Protective effects of intratracheally administered quercetin on lipopolysaccharide-induced acute lung injury. Takashima et al. Respiratory Research 2014;15(150):1-10.spa
dc.relation.referencesChen K.F, Chaou C.H, Jiang J.Y, Yu H.W, Meng Y.H, Tang W.C, et al. Diagnostic Accuracy of Lipopolysaccharide-Binding Protein as Biomarker for Sepsis inAdult Patients: A Systematic Review and Meta-Analysis. PLOS ONE. 2016;11(4):1-13.spa
dc.relation.referencesKrasity B, Troll J, Lehnert E, Hackett K, Dillard J, Apicella M, et al. Structural and Functional Features of a Developmentally Regulated Lipopolysaccharide-Binding Protein. mBio. 2015;6(5):1-10.spa
dc.relation.referencesDupont A, Heinbockel L, Brandenburg K, Hornef M. Antimicrobial peptides and the enteric mucus layer act in concert to protect the intestinal mucosa. Gut Microbes Deecember 2014;5(6):761-765.spa
dc.relation.referencesFang L, Xu Z, Wang G.S, Ji F, Mei C, Liu J, et al. Directed Evolution of an LBP/CD14 Inhibitory Peptide and Its Anti-Endotoxin Activity. PLoS One. 2014;9(7):1-10.spa
dc.relation.referencesPłóciennikowska A, Hromada-Judycka A, Borzecka K, Kwiatkowska K. Co-operation of TLR4 and raft proteins in LPSinduced pro-infl ammatory signaling. Cell. Mol. Life Sci. 2015;72:557–581.spa
dc.relation.referencesYang H, Wang H, Ju Z, Ragab A.A, Lundbäck P, Long W. MD-2 is required for disulfi de HMGB1– dependent TLR4 signaling. J Exp Med. 2015;212(1):5-14spa
dc.relation.referencesWang H, Wei Y, Zeng Y, Qin Y, Xiong B, Qin G, et al. The association of polymorphisms of TLR4 and CD14 genes with susceptibility to sepsis in a Chinese population. BMC Med Genet. 2014;15(123):1-9.spa
dc.relation.referencesMukherjee S, Karmakar S, Sinha Babu S.P. TLR2 and TLR4 mediated host immune responses in major infectious diseases: a review. braz j infect dis. 2016; 20(2):193–204.spa
dc.relation.referencesParamo T, Tomasio S.M, Irvine K.L, Bryant C.E, Bond P.J. Energetics of Endotoxin Recognition in the Toll-Like Receptor 4 Innate Immune Response. Sci Rep. 2015;5(17997):1-13.spa
dc.relation.referencesZhang S, Yu M, Guo Q, Li1 R, Li G, Tan S, et al. Annexin A2 binds to endosomes and negatively regulates TLR4- triggered inflammatory responses via the TRAM-TRIF pathway. Sci Rep. 2015;5(15859):1-15.spa
dc.relation.referencesTsirigotis P, Chondropoulos S, Gkirkas K, Meletiadis J, Dimopoulou I. Balanced control of both hyper and ypo-infl ammatoryphases as a new treatment paradigm in sepsis. J Thorac Dis. 2016;8(5):E312-E316.spa
dc.relation.referencesBoomer JS, Green JM, Hotchkiss RS. The changing immune system in sepsis: is individualized immuno-modulatory therapy the answer?. Virulence. 2014;5(1):45-56.spa
dc.relation.referencesKajiwara Y, Schiff T, Voloudakis G, Gama Sosa M.A, Elder G, Bozdagi O, et al. A Critical Role for Human Caspase-4 in Endotoxin Sensitivity. J Immunol. 2014;193(1):335-43.spa
dc.relation.referencesSmith C, Wang X, Yin H. Caspases come together over LPS. Trends Immunol. 2015;36(2):59–61.spa
dc.relation.referencesAziz , Jacob A, Wang P. Revisiting caspases in sepsis. Cell Death Dis. 2014;20(5):1-12.spa
dc.relation.referencesJorgensen I, Miao E.A. Pyroptotic cell death defends against intracellular pathogens. Immunol Rev. 2015;265(1):130–142.spa
dc.relation.referencesWiersinga W.J, Leopold S.J, Cranendonk D.R, Van der Poll T. Host innate immune responses to sepsis. Virulence. 2014;5(1):36–44.spa
dc.relation.referencesManS.M, Kanneganti T.D. Regulation of infl ammasome activation. Immunol Rev. 2015;265(1):6–21.spa
dc.relation.referencesSuárez R, Buelvas N. El infl amosoma: mecanismos de activación. Invest Clin. 2015;56(1):74 – 99.spa
dc.relation.referencesGómez H.G, Rugeles M.T, Jaimes F.A. Características inmunológicas claves en la fi siopatología de la sepsis Infectio. 2015;19(1):40-46.spa
dc.relation.referencesYu Y, Tang D, Kang R. Oxidative stress-mediated HMGB1 biology. Front Physiol. 2015;6:93:1-9.spa
dc.relation.referencesWang H, Ward MF, Sama AE. Targeting HMGB1 in the treatment of sepsis. Expert Opin Ther Targets. 2014;18(3):257-68.spa
dc.relation.referencesLee SA, Kwak MS, Kim S, Shin JS. The role of high mobility group box 1 in innate immunity. Yonsei Med J. 2014;55(5):1165-76.spa
dc.relation.referencesLuo L, Zhang S, Wang Y, Rahman M, Syk I, Zhang E, Thorlacius H. Proinfl ammatory role of neutrophil extracellular traps in abdominal sepsis. Am J Physiol Lung Cell Mol Physiol. 2014;307(7):L586-96.spa
dc.relation.referencesZhang J, Yang J, Xu X, Liang L, Sun H, Liu G, et al. The influence of genetic polymorphisms in TLR4 and TIRAP, and their expression levels in peripheral blood, on susceptibility to sepsis. Exp Ther Med. 2016;11(1):131-139.spa
dc.relation.referencesBataille A, Galichon P, Ziliotis MJ, Sadia I, Hertig A. Epigenetic changes during sepsis: on your marks!. Crit Care. 2015;19(358):1-3.spa
dc.relation.referencesArens C, Bajwa SA, Koch C, Siegler BH, Schneck E, Hecker A, et al. Sepsis-induced long-term immuneparalysis - results of adescriptive, explorative study. Crit Care. 2016;20(93)1-11spa
dc.relation.referencesSchulte W1, Bernhagen J, Bucala R. Cytokines in sepsis: potent immunoregulators and potential therapeutic targets--an updated view. Mediators Infl amm. 2013;2013(165974):1-16.spa
dc.relation.referencesYan J, Li S, Li S. The role of the liver in sepsis. . Int Rev Immunol. 2014;33(6):498-510.spa
dc.relation.referencesMinemura M, Tajiri K, Shimizu Y. Liver involvement in systemic infection. World J Hepatol. 2014;6(9):632-42.spa
dc.relation.referencesSônego F, Castanheira FV, Ferreira RG, Kanashiro A, Leite CA, Nascimento DC, et al. Paradoxical Roles of the Neutrophil in Sepsis: Protective and Deleterious. Front Immunol. 2016;7(155):1-7.spa
dc.relation.referencesAllen KS, Sawheny E, Kinasewitz GT. Anticoagulant modulation of inflammation in severe sepsis. World J Crit Care Med. 2015 May 4;4(2):105-15.spa
dc.relation.referencesLupu F, Keshari RS, Lambris JD, Coggeshall KM. Crosstalk between the coagulation and complement systems in sepsis. Thromb Res. 2014;133(01):S28-31.spa
dc.relation.referencesCharchafl ieh J, Rushbrook J, Worah S, Zhang M. Activated Complement Factors as Disease Markers for Sepsis. Dis Markers. 2015;2015(382463):1-9.spa
dc.rightsRevista Cuarzo - 2015spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttps://revistas.juanncorpas.edu.co/index.php/cuarzo/article/view/138spa
dc.subjectsepsiseng
dc.subjectgram-negative bacteriaeng
dc.subjectmoleculareng
dc.subjectvirulence factorseng
dc.subjectclinical pathologyeng
dc.subjectsepsisspa
dc.subjectbacterias gram-negativasspa
dc.subjectmolecularspa
dc.subjectfactores de virulenciaspa
dc.subjectpatología clínicaspa
dc.titleFisiopatología de la sepsis por bacterias gram negativas: bases molecularesspa
dc.title.translatedPathophysiology of sepsis by gram negative bacteria: Molecular baseseng
dc.typeArtículo de revistaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_dcae04bcspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.localJournal articleeng
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREVspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublicationspa

Archivos