Publicación: Temperatura promedio horaria durante el 2018 en Bogotá-Suba: Pasos claves para realizar un análisis de series temporales.
dc.contributor.author | Teherán, Aníbal A. | spa |
dc.contributor.author | Martínez, Víctor M. | spa |
dc.contributor.author | Robayo, Jaime A. | spa |
dc.contributor.author | Wilquen, Camila I. | spa |
dc.contributor.author | Acero de la Parra, Gerhard Misael | spa |
dc.date.accessioned | 2023-05-06T00:00:00Z | |
dc.date.accessioned | 2025-08-05T14:25:38Z | |
dc.date.available | 2023-05-06T00:00:00Z | |
dc.date.available | 2025-08-05T14:25:38Z | |
dc.date.issued | 2023-05-06 | |
dc.description.abstract | Introducción: Los modelos de series de tiempo[MST] permiten descubrir la tendencia y comportamiento de datos ocurridos en diversas medidas de tiempo ordenadas cronológicamente. Objetivos: Nosotros describimos los pasos claves para seleccionar y analizar un MST aplicado en datos de la temperatura horaria en el año 2018 (Bogotá–Suba). Metodología: La temperatura horaria promedio fue 14.4 °C (4.1; min: 5.1, max: 27.0 °C) con diferencias al comparar entre horas del día y meses del año (Valor p:<0.001; Kruskall Wallis test). Los componentes de la serie evidenciaron un patrón estacionario (Dickey-Fuller; Valor p:<0.01) y alta influencia de los componentes periódico y aleatorio[Comp_per&aleat]. La influencia de los Comp_per&aleat disminuyó al diferenciar la serie[ndiff1], y preliminarmente con los análisis de autocorrelación[ACF;PACF] se esperaba un modelo ARIMA (ARIMA: p1_d0_q3). El modelo p1,d0,q3[AIC: 1382.55] fue más parsimonioso que el modelo p2_d0_q2[AIC: 1390.92] sugerido por la función AutoARIMA (Forecast Library), pero el gráfico Inverse AR Root sugirió mayor estabilidad en el modelo p2_d0_q2. No obstante,, entre los modelos paramétricos y no paramétricos ejecutados, el MST Holt-Winters de doble periodicidad pronosticó con alta precisión[Forecast_IC95%] el comportamiento y tendencia de la temperatura °C. Conclusión: Los datos ordenados de la temperatura horaria en la localidad de Suba-Bogotá permitieron aplicar los pasos básicos para seleccionar un MST. Esta aproximación práctica puede ser útil para estudiantes o principiantes que necesitan analizar observaciones secuenciales. | spa |
dc.description.abstract | Introduction: Time series models [TSM] allow us to discover the trend and behavior of data occurring in several chronologically ordered time measurements. Objective: We describe the basic steps to select and perform a TSM applied to hourly temperature data for the year 2018 (Bogota-Suba). Methodology: Data were obtained from hourly temperature measurements (°C) in the Bogotá Air Quality Monitoring Network [RMCAB] located in Bogotá-Suba (2018). The monthly and hourly mean(SD) temperature was described, and the TSM that best fit the seasonal, and trend of the hourly temperature was selected (RStudio 2022.07.2). Results: The mean hourly temperature was 14.4 °C (4.1; min: 5.1, max: 27.0 °C) with differences when comparing between hours of the day and months of the year (p-value: <0.001; Kruskall Wallis test). The components of the series evidenced a stationary pattern (Dickey-Fuller; p-value: <0.01) and high influence of the periodic and random components [Comp_per&aleat]. The influence of the Comp_per&aleat decreased when differentiating the series [ndiff1], and preliminarily with the autocorrelation analyses [ACF; PACF] a SARIMA model was expected (ARIMA: p1_d0_q3). The p1,d0,q3 model [AIC: 1382.55] was more parsimonious than the p2_d0_q2 model [AIC: 1390.92] suggested by the AutoARIMA function (Forecast Library), but the Inverse_AR_Root plot suggested greater stability in the p2_d0_q2 model. Nevertheless, among the parametric and non-parametric models run, the dual-periodicity MST Holt-Winters predicted with high accuracy[Forecast_IC95%] the behavior and trend of temperature °C. Conclusion: The ordered hourly temperature data for the Suba-Bogotá locality allowed us to apply the key steps for selecting a TSM. This practical approach may be useful for students or beginners who need to learn or analyze sequential observations. | eng |
dc.format.mimetype | application/pdf | spa |
dc.identifier.doi | 10.26752/cuarzo.v28.n2.679 | |
dc.identifier.eissn | 2500-7181 | |
dc.identifier.issn | 0121-2133 | |
dc.identifier.uri | https://repositorio.juanncorpas.edu.co/handle/001/455 | |
dc.identifier.url | https://doi.org/10.26752/cuarzo.v28.n2.679 | |
dc.language.iso | spa | spa |
dc.publisher | Fundación Universitaria Juan N. Corpas | spa |
dc.relation.bitstream | https://revistas.juanncorpas.edu.co/index.php/cuarzo/article/download/679/509 | |
dc.relation.citationendpage | 12 | |
dc.relation.citationissue | 2 | spa |
dc.relation.citationstartpage | 7 | |
dc.relation.citationvolume | 28 | spa |
dc.relation.ispartofjournal | Revista Cuarzo | spa |
dc.relation.references | Lakhan VC. Time Series Modeling. In: Schwartz, M.L. (eds) Encyclopedia of Coastal Science. Encyclopedia of Earth Science Series. Springer, Dordrecht. 2005. https://doi.org/10.1007/1-4020-3880-1_325 | spa |
dc.relation.references | Allard R. Use of time-series analysis in infectious disease surveillance. Bull World Health Organ. 1998;76(4):327-33. | spa |
dc.relation.references | Stadnitski T, Wild B. How to Deal With Temporal Relationships Between Biopsychosocial Variables: A Practical Guide to Time Series Analysis. Psychosom Med. 2019 Apr;81(3):289-304. doi: 10.1097/PSY.0000000000000680. | spa |
dc.relation.references | Donatelli RE, Park JA, Mathews SM, Lee SJ. Time series analysis. Am J Orthod Dentofacial Orthop. 2022 Apr;161(4):605-608. doi: 10.1016/j.ajodo.2021.07.013. | spa |
dc.relation.references | Beard E, Marsden J, Brown J, Tombor I, Stapleton J, Michie S, et al. Understanding and using time series analyses in addiction research. Addiction. 2019 Oct;114(10):1866-1884. doi: 10.1111/add.14643. | spa |
dc.relation.references | Xia Y, Huang S. Time Series Cheat Sheet. RStudio®. Updated: 2019-10 | spa |
dc.relation.references | Hyndman RJ, Athanasopoulos G. Forecasting: principles and practice, 2nd edition, OTexts: Melbourne, Australia. 2018. OTexts.com/fpp2. Accessed on 16-02-2023. | spa |
dc.relation.references | Lang TA, Altman DG. Basic statistical reporting for articles published in biomedical journals: the "Statistical Analyses and Methods in the Published Literature" or the SAMPL Guidelines. Int J Nurs Stud. 2015 Jan;52(1):5-9. doi: 10.1016/j.ijnurstu.2014.09.006. | spa |
dc.relation.references | Dwivedi AK, Shukla R. Evidence-based statistical analysis and methods in biomedical research (SAMBR) checklists according to design features. Cancer Rep (Hoboken). 2020 Aug;3(4):e1211. doi: 10.1002/cnr2.1211. | spa |
dc.relation.references | Teherán AA. "Replication Data for: Average hourly temperature in Bogotá-Suba during 2018: Key steps to perform a time-series analysis". Harvard Dataverse, V1. 2023. https://doi.org/10.7910/DVN/YFCF70. | spa |
dc.relation.references | Teherán AA. Average hourly temperature in Bogotá-Suba during 2018: Key steps to perform a time-series analysis. https://github.com/mdteheran/Pollution_Time_series | spa |
dc.relation.references | Chyon FA, Suman MNH, Fahim MRI, Ahmmed MS. Time series analysis and predicting COVID-19 affected patients by ARIMA model using machine learning. J Virol Methods. 2022 Mar;301:114433. doi: 10.1016/j.jviromet.2021.114433. | spa |
dc.rights | Aníbal A. Teherán, Víctor M. Martínez, Jaime A. Robayo, Camila I. Wilquen - 2022 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | spa |
dc.rights.creativecommons | Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0. | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0 | spa |
dc.source | https://revistas.juanncorpas.edu.co/index.php/cuarzo/article/view/679 | spa |
dc.subject | Time-series | eng |
dc.subject | Time factors | eng |
dc.subject | Environment | eng |
dc.subject | Environment temperature | eng |
dc.subject | Weather | eng |
dc.subject | Biostatistics | eng |
dc.subject | Series de tiempo | spa |
dc.subject | Factores de tiempo | spa |
dc.subject | Medioambiente | spa |
dc.subject | Temperatura del medioambiente | spa |
dc.subject | Meteorología | spa |
dc.subject | Bioestadística | spa |
dc.title | Temperatura promedio horaria durante el 2018 en Bogotá-Suba: Pasos claves para realizar un análisis de series temporales. | spa |
dc.title.translated | Average hourly temperature in Bogotá-Suba during 2018: Key steps to perform a time-series analysis. | eng |
dc.type | Artículo de revista | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.local | Journal article | eng |
dc.type.redcol | http://purl.org/redcol/resource_type/ARTREF | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dspace.entity.type | Publication | spa |