Publicación:
Temperatura promedio horaria durante el 2018 en Bogotá-Suba: Pasos claves para realizar un análisis de series temporales.

dc.contributor.authorTeherán, Aníbal A.spa
dc.contributor.authorMartínez, Víctor M.spa
dc.contributor.authorRobayo, Jaime A.spa
dc.contributor.authorWilquen, Camila I.spa
dc.contributor.authorAcero de la Parra, Gerhard Misaelspa
dc.date.accessioned2023-05-06T00:00:00Z
dc.date.accessioned2025-08-05T14:25:38Z
dc.date.available2023-05-06T00:00:00Z
dc.date.available2025-08-05T14:25:38Z
dc.date.issued2023-05-06
dc.description.abstractIntroducción: Los modelos de series de tiempo[MST] permiten descubrir la tendencia y comportamiento de datos ocurridos en diversas medidas de tiempo ordenadas cronológicamente. Objetivos: Nosotros describimos los pasos claves para seleccionar y analizar un MST aplicado en datos de la temperatura horaria en el año 2018 (Bogotá–Suba). Metodología: La temperatura horaria promedio fue 14.4 °C (4.1; min: 5.1, max: 27.0 °C) con diferencias al comparar entre horas del día y meses del año (Valor p:<0.001; Kruskall Wallis test). Los componentes de la serie evidenciaron un patrón estacionario (Dickey-Fuller; Valor p:<0.01) y alta influencia de los componentes periódico y aleatorio[Comp_per&aleat]. La influencia de los Comp_per&aleat disminuyó al diferenciar la serie[ndiff1], y preliminarmente con los análisis de autocorrelación[ACF;PACF] se esperaba un modelo ARIMA (ARIMA: p1_d0_q3). El modelo p1,d0,q3[AIC: 1382.55] fue más parsimonioso que el modelo p2_d0_q2[AIC: 1390.92] sugerido por la función AutoARIMA (Forecast Library), pero el gráfico Inverse­­­ AR Root sugirió mayor estabilidad en el modelo p2_d0_q2. No obstante,, entre los modelos paramétricos y no paramétricos ejecutados, el MST Holt-Winters de doble periodicidad pronosticó con alta precisión[Forecast_IC95%] el comportamiento y tendencia de la temperatura °C.  Conclusión: Los datos ordenados de la temperatura horaria en la localidad de Suba-Bogotá permitieron aplicar los pasos básicos para seleccionar un MST. Esta aproximación práctica puede ser útil para estudiantes o principiantes que necesitan analizar observaciones secuenciales.spa
dc.description.abstractIntroduction: Time series models [TSM] allow us to discover the trend and behavior of data occurring in several chronologically ordered time measurements.  Objective: We describe the basic steps to select and perform a TSM applied to hourly temperature data for the year 2018 (Bogota-Suba). Methodology: Data were obtained from hourly temperature measurements (°C) in the Bogotá Air Quality Monitoring Network [RMCAB] located in Bogotá-Suba (2018). The monthly and hourly mean(SD) temperature was described, and the TSM that best fit the seasonal, and trend of the hourly temperature was selected (RStudio 2022.07.2). Results: The mean hourly temperature was 14.4 °C (4.1; min: 5.1, max: 27.0 °C) with differences when comparing between hours of the day and months of the year (p-value: <0.001; Kruskall Wallis test). The components of the series evidenced a stationary pattern (Dickey-Fuller; p-value: <0.01) and high influence of the periodic and random components [Comp_per&aleat]. The influence of the Comp_per&aleat decreased when differentiating the series [ndiff1], and preliminarily with the autocorrelation analyses [ACF; PACF] a SARIMA model was expected (ARIMA: p1_d0_q3). The p1,d0,q3 model [AIC: 1382.55] was more parsimonious than the p2_d0_q2 model [AIC: 1390.92] suggested by the AutoARIMA function (Forecast Library), but the Inverse_AR_Root plot suggested greater stability in the p2_d0_q2 model. Nevertheless, among the parametric and non-parametric models run, the dual-periodicity MST Holt-Winters predicted with high accuracy[Forecast_IC95%] the behavior and trend of temperature °C. Conclusion: The ordered hourly temperature data for the Suba-Bogotá locality allowed us to apply the key steps for selecting a TSM. This practical approach may be useful for students or beginners who need to learn or analyze sequential observations.eng
dc.format.mimetypeapplication/pdfspa
dc.identifier.doi10.26752/cuarzo.v28.n2.679
dc.identifier.eissn2500-7181
dc.identifier.issn0121-2133
dc.identifier.urihttps://repositorio.juanncorpas.edu.co/handle/001/455
dc.identifier.urlhttps://doi.org/10.26752/cuarzo.v28.n2.679
dc.language.isospaspa
dc.publisherFundación Universitaria Juan N. Corpasspa
dc.relation.bitstreamhttps://revistas.juanncorpas.edu.co/index.php/cuarzo/article/download/679/509
dc.relation.citationendpage12
dc.relation.citationissue2spa
dc.relation.citationstartpage7
dc.relation.citationvolume28spa
dc.relation.ispartofjournalRevista Cuarzospa
dc.relation.referencesLakhan VC. Time Series Modeling. In: Schwartz, M.L. (eds) Encyclopedia of Coastal Science. Encyclopedia of Earth Science Series. Springer, Dordrecht. 2005. https://doi.org/10.1007/1-4020-3880-1_325spa
dc.relation.referencesAllard R. Use of time-series analysis in infectious disease surveillance. Bull World Health Organ. 1998;76(4):327-33.spa
dc.relation.referencesStadnitski T, Wild B. How to Deal With Temporal Relationships Between Biopsychosocial Variables: A Practical Guide to Time Series Analysis. Psychosom Med. 2019 Apr;81(3):289-304. doi: 10.1097/PSY.0000000000000680.spa
dc.relation.referencesDonatelli RE, Park JA, Mathews SM, Lee SJ. Time series analysis. Am J Orthod Dentofacial Orthop. 2022 Apr;161(4):605-608. doi: 10.1016/j.ajodo.2021.07.013.spa
dc.relation.referencesBeard E, Marsden J, Brown J, Tombor I, Stapleton J, Michie S, et al. Understanding and using time series analyses in addiction research. Addiction. 2019 Oct;114(10):1866-1884. doi: 10.1111/add.14643.spa
dc.relation.referencesXia Y, Huang S. Time Series Cheat Sheet. RStudio®. Updated: 2019-10spa
dc.relation.referencesHyndman RJ, Athanasopoulos G. Forecasting: principles and practice, 2nd edition, OTexts: Melbourne, Australia. 2018. OTexts.com/fpp2. Accessed on 16-02-2023.spa
dc.relation.referencesLang TA, Altman DG. Basic statistical reporting for articles published in biomedical journals: the "Statistical Analyses and Methods in the Published Literature" or the SAMPL Guidelines. Int J Nurs Stud. 2015 Jan;52(1):5-9. doi: 10.1016/j.ijnurstu.2014.09.006.spa
dc.relation.referencesDwivedi AK, Shukla R. Evidence-based statistical analysis and methods in biomedical research (SAMBR) checklists according to design features. Cancer Rep (Hoboken). 2020 Aug;3(4):e1211. doi: 10.1002/cnr2.1211.spa
dc.relation.referencesTeherán AA. "Replication Data for: Average hourly temperature in Bogotá-Suba during 2018: Key steps to perform a time-series analysis". Harvard Dataverse, V1. 2023. https://doi.org/10.7910/DVN/YFCF70.spa
dc.relation.referencesTeherán AA. Average hourly temperature in Bogotá-Suba during 2018: Key steps to perform a time-series analysis. https://github.com/mdteheran/Pollution_Time_seriesspa
dc.relation.referencesChyon FA, Suman MNH, Fahim MRI, Ahmmed MS. Time series analysis and predicting COVID-19 affected patients by ARIMA model using machine learning. J Virol Methods. 2022 Mar;301:114433. doi: 10.1016/j.jviromet.2021.114433.spa
dc.rightsAníbal A. Teherán, Víctor M. Martínez, Jaime A. Robayo, Camila I. Wilquen - 2022spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.creativecommonsEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0spa
dc.sourcehttps://revistas.juanncorpas.edu.co/index.php/cuarzo/article/view/679spa
dc.subjectTime-serieseng
dc.subjectTime factorseng
dc.subjectEnvironmenteng
dc.subjectEnvironment temperatureeng
dc.subjectWeathereng
dc.subjectBiostatisticseng
dc.subjectSeries de tiempospa
dc.subjectFactores de tiempospa
dc.subjectMedioambientespa
dc.subjectTemperatura del medioambientespa
dc.subjectMeteorologíaspa
dc.subjectBioestadísticaspa
dc.titleTemperatura promedio horaria durante el 2018 en Bogotá-Suba: Pasos claves para realizar un análisis de series temporales.spa
dc.title.translatedAverage hourly temperature in Bogotá-Suba during 2018: Key steps to perform a time-series analysis.eng
dc.typeArtículo de revistaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.localJournal articleeng
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREFspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublicationspa

Archivos