Publicación:
Fisiopatología de la sepsis por gram positivos

dc.contributor.authorMéndez Fandiño, Yardany Rafaelspa
dc.contributor.authorBarrera C., María Claudiaspa
dc.date.accessioned2017-07-07T10:13:15Z
dc.date.accessioned2025-08-05T14:24:52Z
dc.date.available2017-07-07T10:13:15Z
dc.date.available2025-08-05T14:24:52Z
dc.date.issued2017-07-07
dc.description.abstractLas bacterias gram positivas vienen cobrando importancia como agentes etiológicos de la sepsis siendo algunos de principales representantes Staphylococcus aureus, las cepas de S.aureus meticilino resistentes (MRSA del inglés) y el Streptococcus pyogenes o también llamado Streptococcus del grupo A invasivo (GAS). Dado que en su estructura celular presentan diversas moléculas que pueden ser reconocidas como patrones moleculares asociados a patógenos (PAMPs) como son el peptidoglicano (PNG) el ácido teicoico (LTA), las lipoproteínas; y otras que activan directamente el sistema inmune adaptativo como son los Superantígenos; los pacientes infectados pueden exponerse de manera simultánea a una respuesta inmune amplifi cada de manera sinérgica entre todos estos tipos de antígenos, que a través de vías de señalización intracelular desencadenarán la transcripción de genes codifi cadores de citocinas pro infl amatorias como el TNFα, la IL-1β, la IL-6, el INFγ, IL-8, IL-18, IL-2, IL-12, IL-10 que darán lugar a muchas de las manifestaciones clínicas de la sepsis y se vienen asociando como predictores del pronóstico de esta junto a otros marcadores moleculares de la misma.spa
dc.description.abstractGram positive bacteria are becoming important as etiological agents of sepsis, with some of the main representatives of Staphylococcus aureus, strains of S. aureus methicillin resistant (MRSA) and the Streptococcus pyogenes or also Streptococcus group A invasive (GAS). Since in their cellular structure they present several molecules that can be recognized as molecular pathogen associated pathogens (PAMPs) such as peptidoglycan (PNG), teicoico acid (LTA), lipoproteins; and others that directly activate the adaptive immune system such as Superantigens; infected patients can be exposed simultaneously to a synergistically amplifi ed immune response among all these types of antigens, which through intracellular signaling pathways will trigger the transcription of genes encoding pro-infl ammatory cytokines such as TNFα, IL-1β, IL-8, IL-12, IL-12, IL-10, IL-10, which will lead to many of the clinical manifestations of sepsis and are associated as predictors of prognosis of this with other molecular markers of the sameeng
dc.format.mimetypeapplication/pdfspa
dc.identifier.doi10.26752/cuarzo.v22.n1.146
dc.identifier.eissn2500-7181
dc.identifier.issn0121-2133
dc.identifier.urihttps://repositorio.juanncorpas.edu.co/handle/001/381
dc.identifier.urlhttps://doi.org/10.26752/cuarzo.v22.n1.146
dc.language.isospaspa
dc.publisherFundación Universitaria Juan N. Corpasspa
dc.relation.bitstreamhttps://revistas.juanncorpas.edu.co/index.php/cuarzo/article/download/146/141
dc.relation.citationendpage65
dc.relation.citationissue1spa
dc.relation.citationstartpage51
dc.relation.citationvolume22spa
dc.relation.ispartofjournalRevista Cuarzospa
dc.relation.referencesMartin GS. Sepsis, severe sepsis and septic shock: changes in incidence, pathogens and outcomes. Expert Rev Anti Infect Ther. 2012;10(6):701-6.spa
dc.relation.referencesRamachandran G. Gram-positive and gram-negative bacterial toxins in sepsis: a brief review. Virulence. 2014;5(1):213-8.spa
dc.relation.referencesSilveira-Lessa AL, Quinello C, Lima L, Redondo AC, Ceccon ME, Carneiro-Sampaio M, et al. TLR expression, phagocytosis and oxidative burst in healthy and septic newborns in response to Gram-negative and Gram-positive rods. Hum Immunol. 2016:S0198-8859(16)30383-4:1-9.spa
dc.relation.referencesReglinski M, Sriskandan S. The contribution of group A streptococcal virulence determinants to the pathogenesis of sepsis. Virulence.2014;5(1):127-36.spa
dc.relation.referencesPowers ME1, Bubeck Wardenburg J. Igniting the fi re: Staphylococcus aureus virulence factors in the pathogenesis of sepsis. PLoS Pathog. 2014;10(2):1-1.spa
dc.relation.referencesKang SS, Sim JR, Yun CH, Han SH. Lipoteichoic acids as a major virulence factor causing inflammatory responses via Toll-like receptor 2. Arch Pharm Res [internet]. 2016:1-11 [consultado 2016 Agosto 20]. DOI:10.1007/s12272-016-0804-yspa
dc.relation.referencesHenneke P1, Dramsi S, Mancuso G, Chraibi K, Pellegrini E, Theilacker C, et al. Lipoproteins are critical TLR2 activating toxins in group B streptococcal sepsis. J Immunol. 2008;180(9):6149-58.spa
dc.relation.referencesBern M, Beniston R, Mesnage S. Towards an automated analysis of bacterial peptidoglycan structure. Anal Bioanal Chem [internet]. 2016:1-10 [consulado 2016 Agosto 20]. DOI 10.1007/ s00216-016-9857-5spa
dc.relation.referencesMalanovic N, Lohner K. Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides. Biochim Biophys Acta. 2016;1858(5):936-46.spa
dc.relation.referencesGupta VK, Sekhar S, Dhanda V, Toor D, Kumar R, Chakraborti A. Immune response against M protein-conserved region peptides from prevalent group A Streptococcus in a North Indian population.J Microbiol Immunol Infect. 2016 ;49(3):352-8.spa
dc.relation.referencesYoung PG1, Moreland NJ2, Loh JM3, Bell A4, Atatoa Carr P5, Proft T, et al. Structural conservation, variability, and immunogenicity of the T6 backbone pilin of serotype M6 Streptococcus pyogenes. Infect Immun. 2014;82(7):2949-57.spa
dc.relation.referencesHynes W, Sloan M. Secreted Extracellular Virulence Factors. En: Ferretti JJ, Stevens DL, Fischetti VA. Streptococcus pyogenes: Basic Biology to Clinical Manifestations [internet]. Oklahoma: University of Oklahoma Health Sciences Center; 2016 [Consultado 2016 febrero 22]. Disponible en: https://www.ncbi.nlm.nih. gov/books/NBK333411/spa
dc.relation.referencesImmacuada Margarit y Ros. Streptococcus pyogenes Pili. En: Ferretti JJ, Stevens DL, Fischetti VA. Streptococcus pyogenes:Basic Biology to Clinical Manifestations [internet]. Oklahoma:University of Oklahoma Health Sciences Center; 2016 [Consultado 2016 febrero 22]. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK333423/spa
dc.relation.referencesRyan PA, Juncosa B. Group A Streptococcal Adherence. En: Ferretti20 JJ, Stevens DL, Fischetti VA. Streptococcus pyogenes: Basic Biology to Clinical Manifestations [internet]. Oklahoma: University of Oklahoma Health Sciences Center; 2016 [Consultado 2016 febrero 22]. Disponible en: https://www.ncbi.nlm.nih.gov/ books/NBK333427/spa
dc.relation.referencesFischetti VA. M Protein and Other Surface Proteins on Streptococci. En: Ferretti JJ, Stevens DL, Fischetti VA. Streptococcus pyogenes: Basic Biology to Clinical Manifestations [internet]. Oklahoma: University of Oklahoma Health Sciences Center; 2016 [Consultado 2016 febrero 22]. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK333431/spa
dc.relation.referencesCole JN, Barnett TC, Nizet V, Walker MJ. Molecular insight into invasive group A streptococcal disease. Nat Rev Microbiol. 2011;9(10):724-36.64 Revista Cuarzo - Fundación Universitaria Juan N. Corpas Vol. 22 No. 1spa
dc.relation.referencesGolińska E, Van der Linden M, Więcek G, Mikołajczyk D, Machul A, Samet A, et al. Virulence factors of Streptococcus pyogenes strains from women in peri-labor with invasive infections. Eur J Clin Microbiol Infect Dis. 2016;35(5):747-54.spa
dc.relation.referencesKim HK, Thammavongsa V, Schneewind O, Missiakas D. Recurrent infections and immune evasion strategies of Staphylococcus aureus. Curr Opin Microbiol. 2012 Feb;15(1):92-9. doi: 10.1016/j.mib.2011.10.012. Epub 2011 Nov 14. Spaulding AR, Salgado-Pabón W, Kohler PL, Horswill AR, Leung DY, Schlievert PM. Staphylococcal and streptococcal superantigen exotoxins. Clin Microbiol Rev. 2013;26(3):422-47.spa
dc.relation.referencesKrakauer T. Therapeutic down-modulators of staphylococcal superantigen-induced infl ammation and toxic shock. Toxins (Basel).2010;2(8):1963-83.spa
dc.relation.referencesProft T, Fraser JD. Streptococcal Superantigens: Biological propierties and potential role in disease. En: Ferretti JJ, Stevens DL, Fischetti VA. Streptococcus pyogenes: Basic Biology to Clinical Manifestations [internet]. Oklahoma: University of Oklahoma Health Sciences Center; 2016 [Consultado 2016 febrero 22]. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK333435/spa
dc.relation.referencesAman MJ. Superantigens of a superbug: Major culprits of Staphylococcus aureus disease?. Virulence. 2016; 2:1-4.spa
dc.relation.referencesLiu Q, Yeo WS, Bae T. The SaeRS Two-Component System of Staphylococcus aureus. Genes (Basel). 2016;7(10):1-20.spa
dc.relation.referencesCorredor Arias LF1, Luligo Espinal JS2, Moncayo Ortiz JI2, Santacruz Ibarra JJ3, Álvarez Aldana A. Relationship between super antigenicity, antimicrobial resistance and origin of Staphylococcus aureus isolated. Colomb Med (Cali). 2016;47(1):15-20.spa
dc.relation.referencesSalgado-Pabón W1, Breshears L, Spaulding AR, Merriman JA, Stach CS, Horswill AR, et al. Superantigens are critical for Staphylococcus aureus Infective endocarditis, sepsis, and acute kidney injury. MBio. 2013;4(4):1-9.spa
dc.relation.referencesDeodhar D, Varghese G, Balaji V, John J, Rebekah G, Janardhanan J, et al. Prevalence of Toxin Genes among the Clinical Isolates of Staphylococcus aureus and its Clinical Impact. J Glob Infect Dis. 2015;7(3):97-102. doi: 10.4103/0974-777X.162234.spa
dc.relation.referencesImani Fooladi AA, Ashrafi E, Tazandareh SG, Koosha RZ, Rad HS, Amin M, et al. The distribution of pathogenic and toxigenic genes among MRSA and MSSA clinical isolates. Microb Pathog. 2015;81:60-66.spa
dc.relation.referencesMcAdow M, Kim HK, Dedent AC, Hendrickx AP, Schneewind O, Missiakas DM. Preventing Staphylococcus aureus sepsis through the inhibition of its agglutination in blood. PLoS Pathog. 2011;7(10):e1002307.spa
dc.relation.referencesAslam R, Laventie BJ, Marban C, Prévost G, Keller D, Strub JM, Dorsselaer Av, Haikel Y, Taddei C, Metz-Boutigue MH. Activation of neutrophils by the two-component leukotoxin LukE/D from Staphylococcus aureus: proteomic analysis of the secretions J Proteome Res. 2013;12(8):3667-3678.spa
dc.relation.referencesYoong P, Torres VJ. The effects of Staphylococcus aureus leukotoxins on the host: cell lysis and beyond. Curr Opin Microbiol. 2013;16(1):63-69.spa
dc.relation.referencesYoong P, Torres VJ. Counter inhibition between leukotoxins attenuates Staphylococcus aureus virulence. Nat Commun.2015;6(8125.):1-10.spa
dc.relation.referencesMalachowa N, Kobayashi SD, Braughton KR, Whitney AR, Parnell MJ, Gardner DJ, Deleo FR. Staphylococcus aureus leukotoxin GH promotes infl ammation. J Infect Dis. 2012;206(8):1185- 1193.spa
dc.relation.referencesTilahun AY, Karau M, Ballard A, Gunaratna MP, Thapa A, David CS, Patel R, Rajagopalan G. The impact of Staphylococcus aureus-associated molecular patterns on staphylococcal superantigen-induced toxic shock syndrome and pneumonia. Mediators Infl amm. 2014; 2014:468285.spa
dc.relation.referencesTilahun AY, Chowdhary VR, David CS, Rajagopalan G. Systemic infl ammatory response elicited by superantigen destabilizes T regulatory cells, rendering them ineffective during toxic shock syndrome. J Immunol. 2014;193(6):2919-30.spa
dc.relation.referencesKulhankova K, King J, Salgado-Pabón W. Staphylococcal toxic shock syndrome: superantigen-mediated enhancement of endotoxin shock and adaptive immune suppression. Immunol Res. 2014;59(1-3):182-7.spa
dc.relation.referencesXu SX, McCormick JK. Staphylococcal superantigens in colonization and disease. Front Cell Infect Microbiol. 2012;2(52):1-11.spa
dc.relation.referencesKak V. Mediators of systemic infl ammatory response syndrome and the role of recombinant activated protein C in sepsis syndrome. Infect Dis Clin North Am. 2011;25(4):835-50.spa
dc.relation.referencesSchmidt RR, Pedersen CM, Qiao Y, Zähringer U. Chemical synthesis of bacterial lipoteichoic acids: an insight on its biological signifi cance. Org Biomol Chem. 2011;9(7):2040-52.spa
dc.relation.referencesRay A, Cot M, Puzo G, Gilleron M, Nigou J. Bacterial cell wall macroamphiphiles: pathogen-/microbe-associated molecular patterns detected by mammalian innate immune system. Biochimie. 2013;95(1):33-42.spa
dc.relation.referencesZapata JP. Sepsis: la otra cara de la respuesta inmune. Iatreia. 2011;24(2):179-190.spa
dc.relation.referencesWu T, Xing J, Birukova AA Cell-type-specifi c crosstalk between p38 MAPK and Rho signaling in lung micro- and macrovascular barrier dysfunction induced by Staphylococcus aureus-derivedpathogens. Transl Res. 2013;162(1):45-55.spa
dc.relation.referencesSurbatovic M, Popovic N, Vojvodic D, Milosevic I, Acimovic G, Stojicic M, et al. Cytokine profi le in severe Gram-positive and Gram-negative abdominal sepsis. Sci Rep. 2015;5(11355):1-12.spa
dc.relation.referencesXu XJ, Tang YM, Liao C, Song H, Yang SL, Xu WQ, Shi SW, Zhao N. Infl ammatory cytokine measurement quickly discriminates gram-negative from gram-positive bacteremia in pediatric hematology/oncology patients with septic shock. Intensive Care Med. 2013;39(2):319-26. Abe R, Oda S, Sadahiro T, Nakamura M, Hirayama Y, Tateishi Y, et al. Gram-negative bacteremia induces greater magnitude of infl ammatory response than Gram-positive bacteremia. Critical Care 2010;14:1-7. Fisiopatología de la sepsis por gram positivos Méndez Y. y Barrera MC. 65spa
dc.relation.referencesArai T1, Ohta S2, Tsurukiri J2, Kumasaka K2, Nagata K2, Okita T, et al. Procalcitonin levels predict to identify bacterial strains in blood cultures of septic patients. Am J Emerg Med. 2016;34(11):2150-2153.spa
dc.relation.referencesFeezor RJ, Oberholzer C, Baker HV, Novick D, Rubinstein M, Moldawer LL, et al. Molecular characterization of the acute inflammatory response to infections with gram-negative versus gram-positive bacteria. Infect Immun. 2003;71(10):5803-5813.spa
dc.relation.referencesFoster TJ. The remarkably multifunctional fi bronectin binding proteins of Staphylococcus aureus. Eur J Clin Microbiol Infect Dis. 2016. [Epub ahead of print]. Disponible en: https://www. ncbi.nlm.nih.gov/pubmed/27604831spa
dc.relation.referencesCarrillo R.C, Tapia J, Peña C.A, Kim Kohd M.J, Jaime A.R, Montalvo E. Bases moleculares de la sepsis. Revista de la Facultad de Medicina de la UNAM. 2014;57(3):1-13.spa
dc.relation.referencesBrosnahan AJ, Schlievert PM. Gram-positive bacterial superantigen outside-in signaling causes toxic shock syndrome. FEBS J. 2011;278(23):4649-67.spa
dc.relation.referencesBriceño I. Sepsis: Etiología, Manifestaciones Clínicas y Diagnóstico. Medicrit 2005; 2(9):203-213.spa
dc.relation.referencesLatini R, Caironi P, Masson S. Cardiac dysfunction and circulating cardiac markers during sepsis. Minerva Anestesiol. 2016;82(6):697-710.spa
dc.rightsYardany Rafael Méndez Fandiño, María Claudia Barrera C. - 2017spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.sourcehttps://revistas.juanncorpas.edu.co/index.php/cuarzo/article/view/146spa
dc.subjectSepsiseng
dc.subjectGram-Positive Bacteriaeng
dc.subjectMoleculareng
dc.subjectVirulence Factorseng
dc.subjectClinical Pathology.eng
dc.subjectSepsisspa
dc.subjectBacterias Gram positivasspa
dc.subjectMolecularspa
dc.subjectFactores de virulenciaspa
dc.subjectPatología clínica.spa
dc.titleFisiopatología de la sepsis por gram positivosspa
dc.title.translatedTowards an educational proposal to promote undergraduates’ professional identityeng
dc.typeArtículo de revistaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarhttp://purl.org/coar/resource_type/c_dcae04bcspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.localJournal articleeng
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREVspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublicationspa

Archivos